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Abstract PolicyUpdateris a fully-implemented authorisa-
tion system that provides policy evaluations as well as dy-
namic policy updates. These functions are achieved by the
use of a logic-based language,L, to represent the underly-
ing access control policies, constraints and update proposi-
tions. The system performs access control query evaluations
and conditional policy updates by translating the language
L policies to a normal logic program in a form suitable for
evaluation using theStable Modelsemantics. In this paper,
we show the underlying mechanisms that make up the Pol-
icyUpdater system, including the theoretical foundation of
its formal language, system structure, implementation issues
and some performance analysis.
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1 Introduction

The traditional access control mechanism is theAccess Con-
trol Matrix where columns represent subjects, rows repre-
sent objects and each cell contains the access-rights of a sub-
ject over a particular object. However, flexibility and scala-
bility issues arise when such method is used on real-world
applications. A more effective access control paradigm is the
logic-based approach. In this approach, instead of explicitly
defining all access-rights of all subjects for all objects in a
domain, a set of logical facts and rules are used to define the
policy base.

Recent advances in the field have produced a number of
different approaches to logic-based access control systems,
e.g. [12,16]. One such access control system was proposed
by Bai and Varadharajan [3,4]. Their system’s key character-
istic is its ability to dynamically update an otherwise static
policy base.
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Another system, proposed by Bertino, et. al. [6], uses an
authorisation mechanism based on ordered logic. This pow-
erful mechanism supports both positive and negative autho-
risations as well as rule derivations and default propositions.
Other notable features of this system include the distinction
between weak and strong authorisations, support for admin-
istrative authorisation delegation and more importantly, con-
flict resolution.

Jajodia, et. al. [13] argued that most authorisation sys-
tem models work on a single specific access control pol-
icy. Although it is theoretically possible for such systems to
handle multiple policies, in practice, only one specific pol-
icy can be applied in a given system. As a solution to this
problem, they proposed a general access control framework
whose main feature is its flexibility to handle multiple poli-
cies in one system. Other features of this framework include
support for groups and roles, conflict resolution mechanisms
and support for different decision strategies.

These systems, effective as they are, lack the details nec-
essary to address the issues involved in the implementation
of such systems.

ThePolicy Description Language, orPDL, developed by
Lobo, et. al. [18], is a language for representing event and
action oriented generic policies.PDL is later extended by
Chomicki, et. al. [8] to includepolicy monitorswhich, in
effect, are policy constraints. Bertino, et. al. [7], again took
PDL a step further by extendingpolicy monitorsto allow
users to express preferred constraints. While these generic
languages are expressive enough to be used for access con-
trol systems, systems built for such languages will not have
the ability to dynamically update the policies.

To overcome these limitations, we propose PolicyUp-
dater. This access control system, with its own access control
language, provides the following: (1) a formal logic-based
representation of policies, with variable resolution and de-
fault propositions, (2) a mechanism to conditionally and dy-
namically perform a sequence of policy updates, and (3) a
means of evaluating queries against the policies.

The rest of the paper is organised as follows. In Sec-
tion 2, the paper introduces languageL, with its formal syn-
tax, semantics and some examples. In Section 3, the issues
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of consistency and query evaluation are addressed. The im-
plementation, as discussed in Section 4, gives an overview
of the PolicyUpdater system as a whole, with its internal
and external components. The section also includes a few
algorithms that outline the underlying mechanisms as well
as some experimental results that show the relationship be-
tween input size and execution time. The case study pre-
sented in Section 5 describes an application of the PolicyUp-
dater system: an access control system for web servers. Sec-
tion 6 outlines the issues involved in extending the system to
include temporal authorisations. Finally, Section 7 contains
a summary of the paper.

The PolicyUpdater system was originally introduced in
the conference proceedings paper [9]. Another conference
proceedings paper [10] focuses on a web server authorisa-
tion system based on the core PolicyUpdater system.

2 LanguageL

LanguageL is a first-order logic language that represents a
policy base for an authorisation system. Two key features of
the language are: (1) providing a means to conditionally and
dynamically update the existing policy base and (2) having
a mechanism by which queries may be evaluated from the
updated policy base.

2.1 Syntax

Logic programs of languageL are composed of language
statements, each terminated by a semicolon ”;” character. C-
style comments delimited by the ”/*” and ”*/” characters
may appear anywhere in the logic program.

2.1.1 Components of LanguageL

Each languageL statement is composed of the following
components: identifiers, atoms, facts and expressions.

Identifiers. The most basic unit of languageL is the iden-
tifier. Identifiers are used to represent the different compo-
nents of the language. They are classified into three main
categories:

– Entity Identifiersrepresent constant entities that make up
a logical atom. They are further divided into three types,
with each type again divided into thesingular entityand
group entitysub-types:
– Subjects: e.g. alice, lecturers, user-group.
– Access Rights: e.g. read, write, own.
– Objects: e.g. file, database, directory.

An entity identifier is defined as a single, lower-case al-
phabetic character, followed by 0 to 127 alphanumeric
and underscore characters. The following regular expres-
sion shows the syntax of entity identifiers:

[a-z]([a-zA-Z0-9 ]) {0,127 }

– Policy Update Identifiersare used for the sole purpose of
naming a policy update. These identifier names are then
used as labels to refer to policy update definitions and
directives. As labels, identifiers of this class occupy a
different namespace from entity identifiers. For this rea-
son, policy update identifiers share the same syntax with
entity identifiers:

[a-z]([a-zA-Z0-9 ]) {0,127 }
– Variable Identifiersare used as place-holders for entity

identifiers. To distinguish them from entity and policy
update identifiers, variable identifiers are prefixed with
an upper-case character, followed by 0 to 127 alphanu-
meric and underscore characters. The following regular
expression shows the syntax of variable identifiers:

[A-Z]([a-zA-Z0-9 ]) {0,127 }

Atoms.An atom is composed of a relation with 2 to 3 entity
or variable identifiers that represents a logical relationship
between the entities. There are three types of atoms:

– Holds.An atom of this type states that the subject identi-
fier sub holds the access right identifieracc for the object
identifierobj.

holds(<sub>, <acc>, <obj>)

– Membership.This type of atom states that the singular
identifierelt is a member or element of the group iden-
tifier grp. It is important to note that identifierselt and
grp must be of the same base type (e.g. singular subject
and group subject).

memb(<elt>, <grp>)

– Subset.The subset atom states that the group identifiers
grp1 andgrp2 are of the same types and that groupgrp1
is a subset of the groupgrp2.

subst(<grp1>, <grp2>)

Atoms that contain no variables, i.e. composed entirely
of entity identifiers, are calledground atoms.

Facts. A fact states that the relationship represented by an
atom or its negation holds in the current context. Facts are
negated by the use of the negation operator (!). The follow-
ing shows the formal syntax of a fact:

[!]<holds atom>|<memb atom>|
<subst atom>

Note that facts may be made up of atoms that contain
variable identifiers. Facts with no variable occurrences are
calledground facts.

Expressions.An expression is either a fact or a logical con-
junction of facts, separated by the double-ampersand char-
acters&&.

<fact1> [&& <fact2> [&& ...]]

Expressions that are made up of only ground facts are
calledground expressions.
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2.1.2 Definition Statements

These statements are used to define the different rules that
make up the policy base.

Entity Identifier Definition.All entity identifiers (subjects,
access rights, objects and groups) must first be declared be-
fore any other statements to define the entity domain of the
policy base. The following entity declaration syntax illus-
trates how to define one or more entity identifiers of a par-
ticular type.

ident sub|acc|obj[-grp]
<entity id>[, ...];

Initial Fact Definition. The initial facts of the policy base,
those that hold before any policy updates are performed, are
defined by using the following definition syntax:

initially <ground exp>;

Constraint Definition.A constraint statement is a logical
rule that holds regardless of any changes that may occur
when the policy base is updated. Constraint rules are true
in the initial state and remain true after any policy update.

The constraint syntax below shows that in any state of
the policy base, expressionexp1 holds if expressionexp2
is true and there is no evidence thatexp3 is true. Thewith
absence clause allows constraints to have a default proposi-
tion behaviour, where the absence of proof that an expres-
sion holds satisfies the clause condition of the proposition.

It is important to note that the expressionsexp1, exp2
andexp3 may be non-ground expressions, which means an
identifier occurring within these expressions may be a vari-
able.

always <exp1>
[implied by <exp2>
[with absence <exp3>]];

Policy Update Definition.Before a policy update can be ap-
plied, it must first be defined by using the following syntax:

<upd id>([<var id>[, ...]])
causes <exp1>
[if <exp2>];

upd id is the policy update identifier to be used in ref-
erencing this policy update. The optional parametervar id
is a list which contains the variable identifiers occurring in
expressionsexp1 andexp2 and will be eventually replaced
by entity identifiers when the update is referenced. The post-
condition expressionexp1 is an expression that will hold in
the state after this update is applied. The expressionexp2 is
a precondition expression that must hold in the current state
before this update is applied.

Note that a policy update definition will have no effect
on the policy base until it is applied by one of the directives
described in the following section.

2.1.3 Directive Statements

These statements are used to issue policy update and query
directives to the PolicyUpdater system.

Policy Update Directives.The policy update sequence list
contains a list of references to define policy updates in the
domain. The policy updates in the sequence list are applied
to the current state of the policy base one at a time to produce
a policy base state against which queries can be evaluated.

The following four directives are used for policy update
sequence list manipulation.

– Adding an update into the sequence.Defined policy up-
dates are added into the sequence list through the use of
the following directive:

seq add <upd id>([<elt id>[, ...]]);

whereupd id is the identifier of a defined policy update
and theelt id list is a comma-separated list of entity
identifiers that will replace the variable identifiers that
occur in the definition of the policy update.

– Listing the updates in the sequence.The following direc-
tive may be used to list the current contents of the policy
update sequence list.

seq list;

This directive is answered with an ordinal list of policy
updates in the form

<n> <upd id>([<elt id>[, ...]])

wheren is the ordinal index of the policy update in the
sequence list starting at 0.upd id is the policy update
identifier and theelt id list is the comma-separated list
of entity identifiers used to replace the variable identifier
place-holders.

– Removing an update from the sequence.The syntax be-
low shows the directive used to remove a policy update
reference from the list.n is the ordinal index of the pol-
icy update to be removed. Note that removing a policy
update reference from the sequence list may change the
ordinal index of other update references.

seq del <n>;

– Computing an update sequence.The policy updates in
the sequence list does not get applied until thecompute
directive is issued. The directive causes the policy update
references in the sequence list to be applied one at a time
in the same order that they appear in the list. The direc-
tive also causes the system to generate the policy base
models against which query requests can be evaluated.

compute;
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Query Directive.A ground query expression may be issued
against the current state of the policy base. This current state
is derived after all the updates in the update sequence have
been applied, one at a time, upon the initial state. Query ex-
pressions are answered with atrue, false or anunknown,
depending on whether the queried expression holds, its nega-
tion holds, or neither, respectively. Syntax is as follows:

query <ground exp>;

Example 1 The following languageL program code listing
shows a simple rule-based document access control system
scenario.

In this example, the subjectalice is initially a member
of the subject groupgrp2, which is a subset of groupgrp1.
The groupgrp1 also initially holds aread access right for
the objectfile. The constraint states that if the groupgrp1
hasread access forfile, and no other information is present
to indicate thatgrp3 does not havewrite access forfile,
then the groupgrp1 is grantedwrite access forfile. For
simplicity, we only consider one policy updatedelete read
and a few queries that are evaluated after the policy update
is performed.

ident sub alice;
ident sub-grp grp1, grp2, grp3;
ident acc read, write;
ident obj file;

initially
memb(alice, grp2) &&
holds(grp1, read, file) &&
subst(grp2, grp1);

always holds(grp1, write, file)
implied by

holds(grp1, read, file)
with absence

!holds(grp3, write, file);

delete read(SG0, OS0)
causes !holds(SG0, read, OS0);

seq add delete read(grp1, file);

compute;

query holds(grp1, write, file);
query holds(grp1, read, file);
query holds(alice, write, file);
query holds(alice, read, file);

2.2 Semantics

After giving a detailed syntactic definition of languageL,
we now define its formal semantics.

The semantics of languageL is based on the well-known
answer set (stable model) semantics of extended logic pro-
grams proposed by Gelfond and Lifschitz [11]. The defini-
tion below formally defines the answer set of a logic pro-
gram.

Definition 1 Given an extended logic programπ composed
of ground facts and rules that do not have the negation-as-
failure operatornot and a setF of all ground facts inπ. A
setλ is then said to be an answer set ofπ if it is the smallest
set that satisfies the following conditions:

1. For any rule of the formρ0 ← ρ1, . . ., ρn wheren ≥ 1,
if ρ1, . . ., ρn ∈ λ, thenρ0 ∈ λ.

2. If λ contains a pair of complementary facts (i.e. a fact
and its negation), thenλ = F .

For a ground extended logic programπ that is composed
of rules that may have the negation-as-failure operatornot,
a setλ is the answer set ofπ if and only ifλ is the answer set
of π′, whereπ′ is obtained fromπ by deleting the following:

1. Each rule that contains a fact of the formnot ρ in its
body whereρ ∈ λ.

2. All facts of the formnot ρ in the bodies of the remaining
rules.

2.2.1 Domain Description of LanguageL

The definition below gives a formal definition of the domain
description of languageL.

Definition 2 The domain descriptionDL of languageL is
defined as a finite set of ground initial state facts, constraint
rules and policy update definitions.

In addition to the domain descriptionDL, languageL
also includes an additional ordered set: the sequence listψ.
The sequence listψ is an ordered set that contains a sequence
of references to policy update definitions. Each policy up-
date reference consists of the policy update identifier and a
series of zero or more identifier entities to replace the vari-
able place-holders in the policy update definitions.

2.2.2 LanguageL∗

In languageL, the policy base is subject to change, which is
triggered by the application of policy updates. Such changes
bring forth the concept of policy base states. Conceptually,
a state may be thought of as a set of facts and constraints
of the policy base at a particular instant. The state transition
notation below shows that a new statePB′ is generated from
the current statePB after the policy updateu is applied.

PB −→u PB′

This concept of a state means that for every policy update
applied to the policy base, a new instance of the policy base
or a new set of facts and constraints are generated. To pre-
cisely define the underlying semantics of domain description
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DL in languageL, we introduce languageL∗, which is an
extended logic program representation of languageL, with
state as an explicit sort.

LanguageL∗ contains only one special state constantS0

to represent the initial state of a given domain description.
All other states are represented as a resulting state obtained
by applying theRes function.

TheRes function takes a policy update referenceu (u ∈
ψ) and the current stateσ as input arguments and returns the
resulting stateσ′ after updateu has been applied to stateσ:

σ′ = Res(u, σ)

Given an initial stateS0 and a policy update sequence list
ψ, each stateσi (0≤ i≤ |ψ|) may be represented as follows:

σ0 = S0

σ1 = Res(u0, σ0)
...
σ|ψ| = Res(u|ψ|−1, σ|ψ|−1)

Substituting each state with a recursive call to theRes
function, the final stateS|ψ| is defined as follows:

S|ψ| = Res(u|ψ|−1,Res(. . .,Res(u0, S0)))

Entities. The entity setE is the union of six disjoint entity
sets: single subjectEss, group subjectEsg, single access right
Eas, group access rightEag, single objectEos and group ob-
ject Eog. Each entity in setE corresponds directly to theen-
tity identifiersof languageL.

E = Es ∪ Ea ∪ Eo
Es = Ess ∪ Esg
Ea = Eas ∪ Eag
Eo = Eos ∪ Eog

Atoms.The main difference between languageL and lan-
guageL∗ lies in the definition of an atom. Atoms in language
L∗ represent a logical relationship of two to three entities, as
with atoms of languageL. Furthermore, atoms of language
L∗ extends this definition by defining the state of the policy
base in which the relationship holds. In this paper, atoms of
languageL∗ are written with the hat character (̂holds, ˆmemb

and ˆsubst) to differentiate from the atoms of languageL.
The atom setAσ is the set of all atoms in stateσ.

Aσ =Aσh ∪ Aσm ∪ Aσs
Aσh = { ˆholds(s, a, o, σ) | s ∈ Es, a ∈ Ea, o ∈ Eo}
Aσm =Aσms ∪ Aσma ∪ Aσmo
Aσs =Aσss ∪ Aσsa ∪ Aσso
Aσms = { ˆmemb(e, g, σ) | e ∈ Ess, g ∈ Esg}
Aσma = { ˆmemb(e, g, σ) | e ∈ Eas, g ∈ Eag}
Aσmo = { ˆmemb(e, g, σ) | e ∈ Eos, g ∈ Eog}
Aσss = { ˆsubst(g1, g2, σ) | g1, g2 ∈ Esg}
Aσsa = { ˆsubst(g1, g2, σ) | g1, g2 ∈ Eag}
Aσso = { ˆsubst(g1, g2, σ) | g1, g2 ∈ Eog}

Facts. A fact is a logical statement that makes a claim that
an atom either holds or does not hold at a particular state.
The following is the formal definition of fact̂ρ in stateσ:

ρ̂σ = [¬]α̂, α̂ ∈ Aσ

2.2.3 Translating LanguageL to LanguageL∗

Given a domain descriptionDL of languageL, we translate
DL into an extended logic program of languageL∗, as de-
noted byTrans(DL). The semantics ofDL are provided by
the answer sets of the extended logic programTrans(DL).
Before we can fully defineTrans(DL), we must first define
the following functions:

TheCopyAtom function takes two arguments: an atom
α̂ of languageL∗ at some stateσ and another stateσ′. The
function returns an equivalent atom of the same type and
with the same entities, but in the new state specified.

CopyAtom(α̂, σ′)

=


ˆholds(s, a, o, σ′), if α̂ = ˆholds(s, a, o, σ)
ˆmemb(e, g, σ′), if α̂ = ˆmemb(e, g, σ)
ˆsubst(g1, g2, σ′), if α̂ = ˆsubst(g1, g2, σ)

Another function,TransAtom, takes an atomα of lan-
guageL and an arbitrary stateσ and returns the equivalent
atom of languageL∗.

TransAtom(α, σ)

=


ˆholds(s, a, o, σ), if α = holds(s, a, o)
ˆmemb(e, g, σ), if α = memb(e, g)
ˆsubst(g1, g2, σ), if α = subst(g1, g2)

TheTransFact function is similar to theTransAtom
function, but instead of translating an atom, it takes a fact
from languageL and a state then returns the equivalent fact
in languageL∗.

Initial Fact Rules.The process of translating initial fact ex-
pressions of languageL to languageL∗ rules is a trivial
procedure: translate each fact that make up the initial fact
expression of languageL with its corresponding equivalent
initial state atom of languageL∗. Given the followingini-
tially statement in languageL:

initially ρ0 && ... && ρn;

The languageL∗ translation of this statement is shown be-
low:

ρ̂0 ←
...
ρ̂n ←

where
ρ̂i = TransFact(ρi, S0),
0 ≤ i ≤ n
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As shown above, the number of initial fact rules gener-
ated from the translation is the number of factsn in the given
languageL initial fact expression.

The following code shows a more realistic example of
languageL initially statements:

initially
holds(admins, read, sys data) &&
memb(alice, admins);

initially
memb(bob, admins);

In languageL∗, the above statements are translated to:

ˆholds(admins, read, sys data, S0)←
ˆmemb(alice, admins, S0)←
ˆmemb(bob, admins, S0)←

Constraint Rules.Each constraint rule in languageL is ex-
pressed as a series of logical rules in languageL∗. Given that
all variable occurrences have been grounded to entity iden-
tifiers, a constraint in languageL, with m, n, o ≥ 0 may be
represented as:

always a0 && ... && am
implied by b0 && ... && bn
with absence c0 && ... && co;

Each fact in thealways clause of languageL corre-
sponds to a new rule, where it is the consequent. Each of
these new rules will have expressionb in the implied by
clause as the positive premise and the expressionc in the
with absence clause as the negative premise.

a0 ← b0, . . . ,bn, not c0, . . . ,not co
...
am ← b0, . . . ,bn, not c0, . . . ,not co

Under the definition of constraint rules, each of the rules
listed above must be made to hold in all states as defined by
the sequence listψ. This can be accomplished by translating
each of the above rules to a set of|ψ| rules, one for each
state.

âS0
0 ← b̂S0

0 , . . . , b̂S0
n , not ĉS0

0 , . . . ,not ĉS0
o

...
â
S|ψ|
0 ← b̂

S|ψ|
0 , . . . , b̂

S|ψ|
n , not ĉ

S|ψ|
0 , . . . ,not ĉ

S|ψ|
o

...
âS0
m ← b̂S0

0 , . . . , b̂S0
n , not ĉS0

0 , . . . ,not ĉS0
o

...
â
S|ψ|
m ← b̂

S|ψ|
0 , . . . , b̂

S|ψ|
n , not ĉ

S|ψ|
0 , . . . ,not ĉ

S|ψ|
o

where
âσi = TransFact(ai, σ), 0 ≤ i ≤m,
b̂σj = TransFact(bj , σ), 0 ≤ j ≤ n,
ĉσk = TransFact(ck, σ), 0 ≤ k ≤ o,
S0 ≤ σ ≤ S|ψ|

For a given languageL constraint rule, the number of
constraint rules generated in the translation is:

m |ψ|

where
m is the number of facts in thealways clause
|ψ| is the number of states

The example below shows how the following language
L code fragment is translated to languageL∗:

always
holds(alice, read, data) &&
holds(alice, write, data)

implied by
memb(alice, admin)

with absence
!holds(alice, own, data);

Given a policy update reference in the sequence listψ
(i.e. |ψ| = 1), the languageL∗ equivalent is as follows:

ˆholds(alice, read, data, S0)←
ˆmemb(alice, admin, S0),

not ¬ ˆholds(alice, own, data, S0)
ˆholds(alice, write, data, S0)←

ˆmemb(alice, admin, S0),
not ¬ ˆholds(alice, own, data, S0)

ˆholds(alice, read, data, S1)←
ˆmemb(alice, admin, S1),

not ¬ ˆholds(alice, own, data, S1)
ˆholds(alice, write, data, S1)←

ˆmemb(alice, admin, S1),
not ¬ ˆholds(alice, own, data, S1)

Policy Update Rules.Given thatm, n ≥ 0, all occurrences
of variable place-holders grounded to entity identifiers, a
policy updateu in languageL is in the form:

u causes a0 && ... && am
if b0 && ... && bn;

In languageL∗, such policy updates may be represented
as a set of implications, with each facta in the postcondition
expression as the consequent and precondition expressionb
as the premise. However, the translation process must also
take into account that the premise of the implication holds
in the state before the policy update is applied and that the
consequent holds in the state after the application.

â0 ← b̂0, . . . , b̂n
...
âm ← b̂0, . . . , b̂n

where
âi = TransFact(ai,Res(u, σ)), 0 ≤ i ≤m,
b̂j = TransFact(bj , σ), 0 ≤ j ≤ n
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Intuitively, given a languageL policy update definition,
the number of languageL∗ rules generated in the transla-
tion ism, which is the number of facts in the postcondition
expression.

For example, given the following 2 languageL policy
update definitions:

grant read()
causes holds(alice, read, file)
if memb(alice, readers);

grant write()
causes holds(alice, write, file)
if memb(alice, writers);

Given the update sequence listψ contains{grant read,
grant write}, the above statements are written in language
L∗ as:

ˆholds(alice, read, file, S1)←
ˆmemb(alice, readers, S0)

ˆholds(alice, write, file, S2)←
ˆmemb(alice, writers, S1)

Additional Constraints.In addition to the translations dis-
cussed above, there are a few other implicit constraint rules
implied by languageL that need to be explicitly defined in
languageL∗.

– Inheritance rules.All properties held by a group is inher-
ited by all the members and subsets of that group. This
rule is easy to apply for subject group entities. However,
careful attention must be given to access right and ob-
ject groups. A subject holding an access right for an ob-
ject group implies that the subject also holds that access
right for all objects in the object group. Similarly, a sub-
ject holding an access right group for a particular object
implies that the subject holds all access rights contained
in the access right group for that object.
A conflict is encountered when a particular property is
to be inherited by an entity from a group of which it is a
member or subset, and the contained entity already holds
the negation of that property. This conflict is resolved by
giving negative facts higher precedence over its positive
counterpart: by allowing member or subset entities to in-
herit its parent group’s properties only if the entities do
not already hold the negation of those properties.
The following are the inheritance constraint rules to al-
low the properties held by a group to propagate to its
members and subsets that do not already hold the nega-
tion of the properties.
1. Subject Group Membership Inheritance

∀ (ss, sg, a, o, σ),
ˆholds(ss, a, o, σ)←

ˆholds(sg, a, o, σ), ˆmemb(ss, sg, σ),
not ¬ ˆholds(ss, a, o, σ)

¬ ˆholds(ss, a, o, σ)←
¬ ˆholds(sg, a, o, σ), ˆmemb(ss, sg, σ)

where
ss ∈ Ess, sg ∈ Esg, a ∈ Ea, o ∈ Eo, S0 ≤ σ ≤ S|ψ|

2. Access Right Group Membership Inheritance
∀ (s, as, ag, o, σ),

ˆholds(s, as, o, σ)←
ˆholds(s, ag, o, σ), ˆmemb(as, ag, σ),

not ¬ ˆholds(s, as, o, σ)

¬ ˆholds(s, as, o, σ)←
¬ ˆholds(s, ag, o, σ), ˆmemb(as, ag, σ)

where
s ∈ Es, as ∈ Eas, ag ∈ Eag, o ∈ Eo, S0 ≤ σ ≤ S|ψ|

3. Object Group Membership Inheritance
∀ (s, a, os, og, σ),

ˆholds(s, a, os, σ)←
ˆholds(s, a, og, σ), ˆmemb(os, og, σ),

not ¬ ˆholds(s, a, os, σ)

¬ ˆholds(s, a, os, σ)←
¬ ˆholds(s, a, og, σ), ˆmemb(os, og, σ)

where
s ∈ Es, a ∈ Ea, os ∈ Eos, og ∈ Eog, S0 ≤ σ ≤ S|ψ|

4. Subject Group Subset Inheritance
∀ (sg1, sg2, a, o, σ),

ˆholds(sg1, a, o, σ)←
ˆholds(sg2, a, o, σ), ˆsubst(sg1, sg2, σ),

not ¬ ˆholds(sg1, a, o, σ)

¬ ˆholds(sg1, a, o, σ)←
¬ ˆholds(sg2, a, o, σ), ˆsubst(sg1, sg2, σ)

where
sg1, sg2 ∈ Esg, a ∈ Ea, o ∈ Eo, sg1 6= sg2,
S0 ≤ σ ≤ S|ψ|

5. Access Right Group Subset Inheritance
∀ (s, ag1, ag2, o, σ),

ˆholds(s, ag1, o, σ)←
ˆholds(s, ag2, o, σ), ˆsubst(ag1, ag2, σ),

not ¬ ˆholds(s, ag1, o, σ)

¬ ˆholds(s, ag1, o, σ)←
¬ ˆholds(s, ag2, o, σ), ˆsubst(ag1, ag2, σ)

where
s ∈ Es, ag1, ag2 ∈ Eag, o ∈ Eo, ag1 6= ag2,
S0 ≤ σ ≤ S|ψ|

6. Object Group Subset Inheritance
∀ (s, a, og1, og2, σ),

ˆholds(s, a, og1, σ)←
ˆholds(s, a, og2, σ), ˆsubst(og1, og2, σ),

not ¬ ˆholds(s, a, og1, σ)

¬ ˆholds(s, a, og1, σ)←
¬ ˆholds(s, a, og2, σ), ˆsubst(og1, og2, σ)
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where
s ∈ Es, a ∈ Ea, og1, og2 ∈ Eog, og1 6= og2,
S0 ≤ σ ≤ S|ψ|

– Transitivity rules.Given three distinct groupsG, G′ and
G′′. If G is a subset ofG′ andG′ is a subset ofG′′, thenG
must also be a subset ofG′′. The following rules ensure
that the transitive property of subject, access right and
object groups hold:
1. Subject Group Transitivity

∀ (sg1, sg2, sg3, σ),
ˆsubst(sg1, sg3, σ)←

ˆsubst(sg1, sg2, σ), ˆsubst(sg2, sg3, σ)
where
sg1, sg2, sg3 ∈ Esg, sg1 6= sg2 6= sg3,
S0 ≤ σ ≤ S|ψ|

2. Access Right Group Transitivity
∀ (ag1, ag2, ag3, σ),

ˆsubst(ag1, ag3, σ)←
ˆsubst(ag1, ag2, σ), ˆsubst(ag2, ag3, σ)

where
ag1, ag2, ag3 ∈ Eag, ag1 6= ag2 6= ag3,
S0 ≤ σ ≤ S|ψ|

3. Object Group Transitivity
∀ (og1, og2, og3, σ),

ˆsubst(og1, og3, σ)←
ˆsubst(og1, og2, σ), ˆsubst(og2, og3, σ)

where
og1, og2, og3 ∈ Eog, og1 6= og2 6= og3,
S0 ≤ σ ≤ S|ψ|

– Inertial rules.Intuitively, all facts in the current state that
are not affected by a policy update should be carried over
to the next state after the update. In languageL∗, this
rule must be explicitly stated as a constraint. Formally,
the inertial rules are expressed as follows:
∀ (α̂,u) ∃α̂′,
α̂′ ← α̂, not ¬ α̂′
¬ α̂′ ← ¬ α̂, not α̂′

where
α̂ ∈ Aσ, u ∈ ψ, α̂′ = CopyAtom(α̂,Res(u, σ))

– Identity rules.Finally, explicit rules must be given to
show that every set is a subset of itself.
∀ (g, σ),

ˆsubst(g, g, σ)
where
g ∈ (Esg ∪ Eag ∪ Eog), S0 ≤ σ ≤ S|ψ|

Definition 3 Given a domain descriptionDL of language
L, the languageL∗ translationTrans(DL) is an extended
logic program of languageL consisting of: (1) initial fact
rules, (2) constraint rules, (3) policy update rules, (4) inher-
itance rules, (5) transitivity rules, (6) inertial rules, and (7)
identity rules as described above.

The domain descriptionDL of languageL is said to be
consistentif and only if the translationTrans(DL) has a
consistent answer set.

Appendix A shows the languageL∗ translation of the
languageL code listing shown in Example 1. Note that given
a domain descriptionDL, the translationTrans(DL) may
contain more rules than the original statements inDL. How-
ever, as the theorem below defines the maximum number of
rules generated in a translationTrans(DL), it shows that
the size of a translated domain|Trans(DL)| can only be
polynomially larger than the size of the given domain|DL|.
Therefore, from a computational viewpoint, computing the
answer sets ofTrans(DL) is always feasible.

Theorem 1 (Translation Size) Given a domain descrip-
tionDL; the setsSi, Sc andSu containing the initially, con-
straint and policy update statements inDL, respectively; the
setE containing all the entities inDL, including its subsets
Es, Ea, Es, Ess, Eas, Eos, Esg, Eag, Eog; the setA contain-
ing all the atoms inDL; the maximum number of factsMi

in the expression of anyinitially statement inSi; the max-
imum number of factsMc in thealways clause expression
of any constraint statement inSc; the maximum number of
factsMu in the postcondition expression of any policy up-
date statement inSu; and finally the policy update sequence
list ψ, then the maximum size of the translationTrans(DL)
is:

|Trans(DL)| ≤
Mi |Si| +
|ψ|Mc |Sc| +
|ψ|Mu +
2 |ψ| |Ess| |Esg| |Ea| |Eo| +
2 |ψ| |Es| |Eas| |Eag| |Eo| +
2 |ψ| |Es| |Ea| |Eos| |Eog| +
2 |ψ| |Esg|2 |Ea| |Eo| +
2 |ψ| |Es| |Eag|2 |Eo| +
2 |ψ| |Es| |Ea| |Eog|2 +
|ψ| (|Esg|3 + |Eag|3 + |Eog|3) +
2 |ψ| |A| +
|ψ| (|Esg| + |Eag| + |Eog|)

Proof From Definition 3, it follows that the size of a lan-
guageL∗ translation is:

|Trans(DL)| =
|Fin| + |Fco| + |Fup| + |Fih| + |Ftr| + |Fie| + |Fid|

whereFin, Fco, Fup, Fih, Ftr, Fie, andFid are the sets
of initial fact rules, constraint rules, policy update rules, in-
heritance rules, transitivity rules, inertial rules, and identity
rules, respectively.

As no initially statement inSi contain an expression
with more thanMi facts, the maximum number of initial
fact rules generated in the translation is:

|Fin| ≤Mi |Si|

Each languageL constraint statement inSc corresponds
to n rules in languageL∗, wheren is the number of policy
update states times the number of facts in thealwaysclause
of the statement. WithMc as the maximal number of facts
in thealwaysclause of any constraint statement, we have:
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|Fco| ≤ |ψ|Mc |Sc|
For policy update statements, only those that are applied

are actually translated to languageL∗. WithMu as the max-
imal number of facts in the postcondition expression of any
applied policy update statement, we have:

|Fup| ≤ |ψ|Mu

The total number of inheritance rules generated in the
translation is the sum of the number of member inheritance
rules and the number of subset inheritance rules:

|Fih| = |Fihm | + |Fihs |
Since the membership inheritance rules show the rela-

tionships between every possible combination of single and
group entities times the number of states times 2 (for nega-
tive facts), we have:

|Fihm | =
2 |ψ| |Ess| |Esg| |Ea| |Eo| +
2 |ψ| |Es| |Eas| |Eag| |Eo| +
2 |ψ| |Es| |Ea| |Eos| |Eog|

For subset inheritance rules, only the relationships be-
tween group entities are considered:

|Fihs | =
2 |ψ| |Esg|2 |Ea| |Eo| +
2 |ψ| |Es| |Eag|2 |Eo| +
2 |ψ| |Es| |Ea| |Eog|2

As transitivity rules enumerate every possible combina-
tions of any three group entities, for each entity type, the
total number of transitivity rules is shown below:

|Ftr| = |ψ| (|Esg|3 + |Eag|3 + |Eog|3)

A single atom in languageL corresponds ton inertial
rules in languageL∗, wheren is the number of states times
2 (for negative facts). This means the total number of inertial
rules generated is:

|Fie| = 2 |ψ| |A|
Lastly, the total number of identity rules is equal to the

total number of group entities times the number of states:

|Fid| = |ψ| (|Esg| + |Eag| + |Eog|)
ut

3 Domain Consistency Checking and Evaluation

A domain description of languageL must be consistent in
order to generate a consistent answer set for the evaluation
of queries. This section considers two issues: the problem of
identifying whether a given domain description is consistent,
and how query evaluation is performed given a consistent
language domain description.

Before the above issues can be considered, a few nota-
tional constructs should first be introduced. Given a domain
descriptionDL composed of the following languageL state-
ments:

initially
a0 && ... && am && ! b0 && ... && ! bn

always
c0 && ... && co && ! d0 && ... && ! dp
implied by
e0 && ... && eq && ! f0 && ... && ! fr
with absence
g0 && ... && gs && ! h0 && ... && ! ht

update()
causes
i0 && ... && iu && ! j0 && ... && ! jv
if
k0 && ... && kw && ! l0 && ... && ! lx

Letγint be an initial fact definition statement,γcon a con-
straint definition statement, andγupd a policy update defini-
tion statement, whereγint, γcon, γupd ∈ DL. We then define
the following set constructor functions:

F+
int(γint) = {az | 0 ≤ z ≤m}
F−
int(γint) = {bz | 0 ≤ z ≤ n}
F+
con(γupd) = {cz | 0 ≤ z ≤ o}
F−
con(γupd) = {dz | 0 ≤ z ≤ p}
F+
upd(γcon) = {iz | 0 ≤ z ≤ u}
F−
upd(γcon) = {jz | 0 ≤ z ≤ v}

Using these functions, we define the following sets of
ground facts:

F+
int = {ρ | ρ ∈ F+

int(γint), γint ∈ DL}
F−
int = {ρ | ρ ∈ F−

int(γint), γint ∈ DL}
F+
con = {ρ | ρ ∈ F+

con(γcon), γcon ∈ DL}
F−
con = {ρ | ρ ∈ F−

con(γcon), γcon ∈ DL}
F+
upd = {ρ | ρ ∈ F+

upd(γupd), γupd ∈ DL}
F−
upd = {ρ | ρ ∈ F−

upd(γupd), γupd ∈ DL}

Additionally, we use the complementary set notationF
to denote a set containing the negation of facts in setF .

F = {¬ρ | ρ ∈ F}.

Let γ be an initial, constraint or policy update definition
statement of languageL. We then define the following func-
tions:

Eff (γ)

=


{a0, . . . ,am, ¬b0, . . . ,¬bn}, if γ is initially
{c0, . . . ,co, ¬d0, . . . ,¬dp}, if γ is constraint
{i0, . . . , iu, ¬j0, . . . ,¬jv}, if γ is update

Def (γ)

=


∅, if γ is initially
{g0, . . . ,gs, ¬h0, . . . ,¬ht}, if γ is constraint
∅, if γ is update
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Pre(γ)

=


∅, if γ is initially
{e0, . . . ,eq, ¬f0, . . . ,¬fr}, if γ is constraint
{k0, . . . ,kw, ¬l0, . . . ,¬lx}, if γ is update

Definition 4 Given a domain descriptionDL of language
L, two ground factsρ andρ′ aremutually exclusiveinDL if:

ρ ∈ {F+
int ∪ F

−
int ∪ F+

con ∪ F−
con ∪ F+

upd ∪ F
−
upd}

implies
ρ′ 6∈ {F+

int ∪ F
−
int ∪ F+

con ∪ F−
con ∪ F+

upd ∪ F
−
upd}

Simply stated, a pair of mutually exclusive facts cannot
both be true in any given state. The following two definitions
refer to languageL statements.

Definition 5 Given a domain descriptionDL of language
L, two statementsγ andγ′ arecomplementaryin DL if one
of the following conditions holds:

1. γ andγ′ are both constraint statements andEff(γ) =
Eff(γ′).

2. γ is a constraint statement,γ′ is an update statement and
Eff(γ) = Eff(γ′).

Definition 6 Given a domain descriptionDL,DL is said to
benormal if it satisfies all of the following conditions:

1. F+
int ∩ F

−
int = ∅.

2. For any two constraint statementsγ andγ′ in DL, in-
cludingγ = γ′,Def(γ) ∩ Eff(γ′) = ∅.

3. For all constraint statementsγ in DL,Eff(γ) ∩ Pre(γ)
= ∅.

4. For any twocomplementarystatementsγ andγ′ in DL,
there exists a pair of ground expressionε ∈ Pre(γ) and
ε′ ∈ Pre(γ′) such thatε andε′ aremutually exclusive.

With the above definitions, we can now provide a suf-
ficient condition to ensure the consistency of a domain de-
scription.

Theorem 2 (Domain Consistency) A normaldomain de-
scription of languageL is alsoconsistent.

Proof From Definition 3, given a normal domain descrip-
tionDL, we only need to show thatTrans(DL) has at least
one consistent answer set to prove thatDL is also consistent.

Given a normal domain descriptionDL, Condition 2 in
Definition 6 ensures that the translationTrans(DL) do not
contain rules of the following form:

ρ̂0 ← . . ., not ρ̂k, . . .
ρ̂1 ← . . ., ρ̂0, . . .
...
ρ̂k−1 ← . . ., ρ̂k−2, . . .
ρ̂k ← . . ., ρ̂k−1, . . .

The absence of these rules meansTrans(DL) is a pro-
gram without negative cycles [17]. As no other rule inDL
can causeTrans(DL) to have these rules, we conclude that
a normal domain descriptionDL, as defined by Definition 6,
will generate an extended logic programTrans(DL) with-
out negative cycles. Also, from [5,17], we further conclude
that the translated programTrans(DL) must have an answer
set.

Condition 1 of Definition 6 prevents rules of the follow-
ing form from occurring inTrans(DL):

ρ̂S0 ←
¬ρ̂S0 ←

This shows that a subset of the answer set which contains
facts from the initial stateS0 is consistent.

Condition 3 of Definition 6 guarantees that rules of the
following form do not occur inTrans(DL):

ρ̂← . . ., ¬ρ̂, . . .

This ensures that all constraint rules translated fromDL are
consistent.

Finally, Condition 4 of Definition 6 ensures that rules in
Trans(DL) of the following form:

ρ̂← . . ., ρ̂′, . . .
¬ρ̂← . . ., ρ̂′′, . . .

cannot both affect the answer set as the premisesρ′ andρ′′

are mutually exclusive and therefore only one is true in any
given state.

These guarantee that the answer set do not contain com-
plementary facts, and therefore guarantee that the answer set
is consistent.
ut
As only consistent domain descriptions can be evaluated

in terms of user queries, Theorem 2 may be used to check
whether a domain description is consistent.

Definition 7 Given aconsistentdomain descriptionDL, a
ground query expressionφ and a finite sequence listψ, we
sayqueryφ holds inDL after the policy updates in sequence
list ψ have been applied, denoted as

DL |= {φ, ψ}
if and only if

∀ (ρ, λ), ρ̂ ∈ λ
where
ρ ∈ φ, λ ∈ Λ,
ρ̂ = TransFact(ρ, S|ψ|),
Λ = answer sets ofTrans(DL)

Definition 7 shows that given a finite list of policy up-
datesψ, a query expressionφ may be evaluated from a con-
sistent languageL domainDL. This is achieved by gener-
ating a set of answer sets from the normal logic program
translationTrans(DL). φ is then said to hold inDL after
the policy updates inψ have been applied if and only if ev-
ery answer set generated contains every fact in the query
expressionφ.
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Example 2 Given the languageL code listing in Example 1
and its semantic translation in Appendix A, where the update
sequence listψ = {delete read(grp1, file)}. The following
shows the evaluated results of each queryφ:

φ0 = holds(grp1, write, file) : TRUE
φ1 = holds(grp1, read, file) : FALSE
φ2 = holds(alice, write, file) : TRUE
φ3 = holds(alice, read, file) : FALSE

4 Implementation

As mentioned earlier,PolicyUpdateris a fully-implemented
system. In this section, we describe the implementation de-
tails of this system. Further technical information and source
code can be found in the project homepage at:

http://www.cit.uws.edu.au/˜jcrescin/projects/PolicyUpdater

4.1 System Structure

Symbol

Table

Policy

Base

Update

PolicyUpdater

Table
  Policy

Parser

Policy

Resource

Parser

Agent

Agent

Authorisation

Administrator

User

Resource
Request

Update
Policy Query /

Update

Fig. 1 Structure of PolicyUpdater

As shown in Figure 1, the PolicyUpdater system works
with an authorisation agent program that queries the policy
base to determine whether to allow users access to resources.
Through an authorisation agent program, the PolicyUpdater
system also allows administrators to dynamically update the
policy base by adding or removing update directives in the
policy update table.

4.1.1 Parsers

As the policy itself is written in languageL, the system uses
two parsers to act as interfaces to the authorisation agent and
the languageL policy.

Policy Parser.The policy parser is responsible for correctly
reading the policy file into the core PolicyUpdater system.
The parser ensures that the policy file strictly adheres to the

languageL syntax then systematically stores entity iden-
tifiers into the symbol table while initial state facts, con-
straint expressions and policy update definitions are stored
into their respective tables in the policy base.

Agent Parser.The agent parser is the direct link between
the core PolicyUpdater system and the authorisation agent
program. The parser’s sole purpose is to receive languageL
directives from an agent, perform the directive upon the pol-
icy base and return a reply if the directive requires one. Such
directives may be to query the policy base or to manipulate
the policy update sequence table.

4.1.2 Data Structures

As languageL program is parsed, each statement contain-
ing entity declarations, initial facts, constraint rules and pol-
icy updates must first be stored into a structure before the
translation process is started. As shown in Appendix B, the
structure is composed of the symbol table, the policy base
and the policy update sequence table.

The symbol table is used to store all entity identifiers de-
fined in the policy, while the rest of the policy definitions
are stored into the policy base. On the other hand, the se-
quence of policy update directives are stored separately into
the update table.

4.2 System Processes

The processes presented in this section shows how the lan-
guageL policy stored in the data structures is translated into
a normal logic program and how it can be dynamically up-
dated and manipulated to evaluate queries. The flowchart in
Figure 2 gives an overview of the system processes.

Policy Variable

Grounding
Policy Base

Symbol

Table

Agent

NLP

Translation

Smodels

Update
Table

Query Request

Policy Update

Query Reply

Ground

Policy

Entity Identifiers

Fig. 2 System Flowchart

4.2.1 Grounding Constraint Variables

As the constraints are in the process of being added into
the constraints table, each variable identifier that occurs in
a constraint is grounded by replacing that constraint with a
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set of constraints wherein each instance of the variable is re-
placed by all entity identifiers defined in the symbol table.
Note that only those entity identifiers that are valid for each
fact in the current constraint are used to replace the vari-
able (e.g. only singular subject entity identifiers are used to
replace an element variable occurring in a subject member
fact).

For example, given that the symbol table contains three
singular subject entity identifiers:alice, bob and charlie,
and the following constraint:

always holds(SSUB, write, file)
implied by

holds(SSUB, read, file) &&
memb(SSUB, students)

with absence
!holds(SSUB, write, file);

Grounding the constraint statement above yields three
new constraint rules, each replacing occurrences of the vari-
ableSSUB with alice, bob andcharlie, respectively.

4.2.2 Policy Updates

In Section 2.2, it is shown that policy updates are performed
by treating each update as a constraint. This constraint is
composed of a premise, which is the precondition in the cur-
rent state and a consequent, which is the postcondition of
the resulting state after the application of the policy update.
The resulting state in this procedure represents the updated
policy.

The most crucial step in performing a policy update is
the translation of the policy updates into normal logic pro-
gram constraints. This step involves identifying which pol-
icy updates are to be applied from the update sequence table
and then composing the required constraint from the update
definition in the policy base. Once the policy update con-
straints are composed, they are then treated as any other con-
straint rules and are translated with the rest of the policy into
a normal logic program.

4.2.3 Translation to Normal Logic Program

The semantics of languageL shows that any consistent lan-
guageL program can be translated into an equivalent ex-
tended logic program then translated again into an equiv-
alent normal logic program. However, the implementation
of such translations can be greatly simplified by translating
languageL programs directly into normal logic programs.

Removing Classical Negation.In order to remove classical
negation from facts of languageL, each classically negated
fact¬ρ is replaced by a new and unique positive factρ′ that
represents the negation of factρ. To preserve the consistency
of the policy base for all factsρ in the domain, the following
constraint rule must be added:

FALSE ← ρ, ρ′

The removal process involves adding a boolean param-
eter to each fact to indicate whether the fact is classically
negated or not. For example, given the fact:

¬ holds(alice, exec, file)

To remove classical negation, it is replaced by:

holds(alice, exec, file, false)

For consistency, the following constraint is added:

FALSE ←
holds(alice, exec, file, true),
holds(alice, exec, file, false)

Representing Facts in Propositional Form.A fact expressed
in normal logic program form is composed of the atom rela-
tion, the state in which it holds and a boolean flag to indicate
classical negation. For notational simplicity, this tuple may
be represented by a unique positive integeri, where0 ≤ i
< |F| (|F| is the total number of facts in the domain). The
process of translating facts of languageL into normal logic
program form is summarised by the following function:

i = Encode(α, σ, τ )

As shown above, theEncode function takes a language
L atomα, the stateσ in whichα holds, and a boolean value
τ to indicate whether or notα is classically negated.Encode
returns a unique indexi for that fact. The steps below out-
lines how theEncode function computes the indexi.

– Enumerate all possible atoms.By using all the entities
in the symbol table, all possible languageL atoms may
be enumerated by grouping together 2 to 3 entities to-
gether. All possible atoms of typeholds are generated
by enumerating all possible combinations of subject, ac-
cess right and object entities. The set ofmember atoms
is generated from all the different combinations of singu-
lar and group entities of types subject, access right and
object. Similarly, the set ofsubset atoms is derived from
different subject, access right and object group pair com-
binations.

– Arrange the atoms in a predefined order.This proce-
dure relies on the assumption that the list of all possible
atoms derived from the step above is arranged in a prede-
fined order. In this step we ensure that the atoms are enu-
merated in the following order:holds, subject member,
access right member, object member, subject subset,
access right subset andobject subset. In addition to
the ordering of atom types, atoms of each type are them-
selves sorted according to the order in which their enti-
ties appear in the symbol table.

– Assign an ordinal index for each enumerated atom.Since
the enumerated list of atoms are ordered, consecutive
positive integers may be assigned to each atom as an or-
dinal indexi, where0 ≤ i < n (n is the total number of
atoms enumerated).
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– Extend indexing procedure to represent facts.At the im-
plementation level, facts are just atoms with truth val-
ues. As such, we can treat each atom as positive facts.
Since negative facts are just mirror images of their pos-
itive counterparts, their indices are calculated by adding
n to the indices of the corresponding positive facts. Thus,
indicesi, wheren ≤ i < 2n are negative facts while in-
dicesi, where0 ≤ i < n are positive facts. Furthermore,
this procedure is again extended to represent the states
of the facts. The process is similar: indicesi, where0 ≤
i < 2n represent facts of stateS0, indicesi, where2n ≤
i < 4n represent facts of stateS1, and so on.

Generating the Normal Logic Program from the Policy Base.
With the languageL policy elements stored into the storage
structures (see Appendix B), a normal logic program can
then be generated for evaluation. The following algorithm
generates a normal logic program, given the Symbol Table
Ts, Initial State Facts TableTi, Constraint Rules TableTc,
Policy Update Definition TableTu, and Policy Update Se-
quence TableTq:

FUNCTION GenNLP(Ts, Ti, Tc, Tu, Tq)
TransInitStateRules(Ti)
TransConstRules(Tc, Tq)
TransUpdateRules(Tu, Tq)
GenInherRules(Ts, Tq)
GenTransRules(Ts, Tq)
GenInertRules(Ts, Tq)
GenIdentRules(Ts, Tq)
GenConsiRules(Ts, Tq)

ENDFUNCTION

The first threeTrans ∗ () functions above perform a di-
rect translation of languageL statements to normal logic
program. The remaining fiveGen∗ () functions generate ad-
ditional constraint rules. In the following algorithms, we use
the following rule constructor functions to generate normal
logic program rules:

– RuleBegin() marks the beginning of a new rule.
– RuleHead(α, τ) generates the consequent of the rule.α

is a numeric representation of an atom (e.g. returned by
theEncode() function) andτ is eitherT or F , indicat-
ing whether the atom is positive or negative (negation-
as-failure).

– RuleBody(α, τ) generates the premise of the rule. The
parameters of this function is the same as that of the
functionRuleHead().

– RuleEnd() marks the end of a rule.

The algorithm below illustrates how initial state rules are
generated from the storage structures. The process itself is
straightforward: each fact in the initial state facts table is
translated by theEncode() function and is made the head of
a new rule whose body is the literalTrue fact.

FUNCTION TransInitStateRules(Ti)
FOR i = 0 TO Len(Ti) DO

a = Encode(Ti[i].atm, 0, Ti[i].tr)
RuleBegin()
RuleHead(a, T)
RuleBody(T, T)
RuleEnd()

ENDDO
ENDFUNCTION

The constraint rules generating algorithm below works
by creating a new rule that is composed of facts from the
constraints table translated by theEncode() function. The
outer loop ensures that a rule is generated for every policy
update state.

FUNCTION TransConstRules(Tc, Tq)
FOR i = 0 TO Len(Tq) DO

FOR j = 0 TO Len(Tc) DO
RuleBegin()
FOR k = 0 TO Len(Tc[j].exp) DO

a = Encode(Tc[j].exp[k].atm,
i,
Tc[j].exp[k].tr)

RuleHead(a)
ENDDO
FOR k = 0 TO Len(Tc[j].pcond) DO

a = Encode(Tc[j].pcond[k].atm,
i,
Tc[j].pcond[k].tr)

RuleHead(a, T)
ENDDO
FOR k = 0 TO Len(Tc[j].ncond) DO

a = Encode(Tc[j].ncond[k].atm,
i,
Tc[j].ncond[k].tr)

RuleHead(a, F)
ENDDO
RuleEnd()

ENDDO
ENDDO

ENDFUNCTION

The algorithm below generates the policy update rules
from the given policy update definition table. Note that only
those policy updates that also appear in the policy update
sequence list are actually translated. The actual translation
process is similar to that of constraint rules, except each vari-
able that may occur within the expressions is first grounded
and the policy update state of each fact in the rule head is
one more than that of each fact in the rule body.

FUNCTION TransUpdateRules(Tu, Tq)
FOR i = 0 TO Len(Tq) DO

FOR j = 0 TO Len(Tu) DO
IF Tq[i].name == Tu[j].name THEN

e =
GndUpdate(Tu[j], Tq[i].ilist)

RuleBegin()
FOR k = 0 TO Len(e.post) DO

a = Encode(e.post[k].atm,
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i + 1,
e.post[k].tr)

RuleHead(a, T)
ENDDO
FOR k = 0 TO Len(e.pre) DO

a = Encode(e.pre[k].atm,
i,
e.pre[k].tr)

RuleBody(a, T)
ENDDO
RuleEnd()

ENDIF
ENDDO

ENDDO
ENDFUNCTION

The functionGndUpdate(U, IL) used in the algorithm
above returns a structure composed of two expressionspre
andpost, which corresponds with thepre andpost fields of
the given policy update definitionU . All variables occurring
in the facts of these expressions are replaced with the corre-
sponding entities from the given entity identifier listIL.

The function shown below generates 6 types of inheri-
tance rules: subset subject, subset access right, subset object,
membership subject, membership access right and member-
ship object. Each of these 6 algorithms work in a similar
way: a rule is generated by composing every possible com-
bination of either subject, access right and object entities to
form either a subset or membership fact. As with the con-
traint rule generating algorithm, each new rule generated is
replicated for each policy update state.

FUNCTION GenInherRules(Ts, Tq)
GenSubSubstInherRules(Ts, Tq)
GenAccSubstInherRules(Ts, Tq)
GenObjSubstInherRules(Ts, Tq)
GenSubMembInherRules(Ts, Tq)
GenAccMembInherRules(Ts, Tq)
GenObjMembInherRules(Ts, Tq)

ENDFUNCTION

The function below generates all the transitivity rules.
Each subject, access right and object transitivity rule gener-
ation algorithm follows a similar procedure: every possible
combination of subject, access right or object group entities
are used to form subset facts, then each of these facts are
used to form a transitivity rule. As with inheritance rules,
each transitivity rule is replicated for each policy update
state.

FUNCTION GenTransRules(Ts, Tq)
GenSubTransRules(Ts, Tq)
GenAccTransRules(Ts, Tq)
GenObjTransRules(Ts, Tq)

ENDFUNCTION

The inertial rules generation function below is composed
of 3 functions that generate inertial rules for each atom type:
holds, membership and subset. Each type of rule is generated

by composing different combinations of entity identifiers to-
gether to form a fact. Each rule is then formed by stating that
for each policy update state, a fact holds in the current state
if it also holds in the previous state and its negation does not
hold in the current state.

FUNCTION GenInertRules(Ts, Tq)
GenHldsInertRules(Ts, Tq)
GenMembInertRules(Ts, Tq)
GenSubsInertRules(Ts, Tq)

ENDFUNCTION

The functionGenIdentRules() shown below generates
the identity rules for each atom type: subject, access right
and object. A simple procedure is followed by each of the
3 functions: for every subject, access right and object group
entities, a subset rule is formed to show that a group is a
subset of itself. As with the other rules, each rule generated
by these functions is replicated for each policy update state.

FUNCTION GenIdentRules(Ts, Tq)
GenSubIdentRules(Ts, Tq)
GenAccIdentRules(Ts, Tq)
GenObjIdentRules(Ts, Tq)

ENDFUNCTION

The last two functions below shows the algorithm to gen-
erate consistency rules for each atom type: holds, member-
ship and subset. As these rules use a similar process to gen-
erate rules, only the holds consistency rule generation algo-
rithm is shown. The rules that are generated ensure that only
a fact or its negation, but never both, holds in the same policy
update state.

FUNCTION GenConsiRules(Ts, Tq)
GenHldsConsiRules(Ts, Tq)
GenMembConsiRules(Ts, Tq)
GenSubsConsiRules(Ts, Tq)

ENDFUNCTION

FUNCTION GenHldsConsiRules(Ts, Tq)
FOR i = 0 TO Len(Tq) DO

FOR j = 0 TO Len(Ts.s) DO
FOR k = 0 TO Len(Ts.a) DO

FOR l = 0 TO Len(Ts.o) DO
ahlds.sub = Ts.s[j]
ahlds.acc = Ts.a[k]
ahlds.obj = Ts.o[l]
RuleBegin()
RuleHead(F, T)
a = Encode(ahlds, i, T)
RuleBody(a, T)
a = Encode(ahlds, i, F)
RuleBody(a, T)
RuleEnd()

ENDDO
ENDDO

ENDDO
ENDDO

ENDFUNCTION
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4.2.4 Query Evaluation

Once a normal logic program has been generated from the
policy stored in the storage structure, a set of answer sets
may then be generated by using the stable model semantics
[21] with the smodels1program. Query evaluation then be-
comes possible by checking whether each fact of a given
query expression holds in each generated answer set of the
normal logic program.

If a given fact indeed holds in all the answer sets, it is
then evaluated to be true. On the other hand, if the negation
of a fact holds in every answer set, then it is evaluated to be
false. A fact or its negation that does not hold in every an-
swer set is neither true nor false, in which case the system
concludes that the truth value of the fact is unknown. The
algorithm below shows how, given a stateS, a query expres-
sionQe can be evaluated against a list of stable modelsSM ,
where each element inSM is a list of facts.

FUNCTION EvaluateExp(Qe, SM, S)
result = T
FOR i = 0 TO Len(Qe) DO

rv = EvaluateFact(Qe[i], SM, S)
IF rv == F THEN

RETURN F
ELSE IF rv == U THEN

result = U
ENDIF

ENDDO
RETURN result

ENDFUNCTION

The algorithm above attempts to evaluate each fact in
the query expression. The functionEvaluateFact() shown
below evaluates a single factQf in stateS, against a list of
stable modelsSM .

FUNCTION EvaluateFact(Qf, SM, S)
a = Encode(Qf.atm, S, Qf.tr)
IF IsFactIn(SM, a) THEN

RETURN T
ELSE

a = Encode(Qf.atm, S, NOT Qf.tr)
IF IsFactIn(a, SM) THEN

RETURN F
ELSE

RETURN U
ENDIF

ENDIF
ENDFUNCTION

The functionIsFactIn() simply returns a boolean value
to indicate whether or not the given fact indexFi (as re-
turned by theEncode() function) is present in every stable
model inSM .

FUNCTION IsFactIn(Fi, SM)

1 Smodels (http://www.tcs.hut.fi/Software/smodels )

FOR i = 0 TO Len(SM) DO
IF NOT IsIn(SM[i], Fi) THEN

RETURN F
ENDIF

ENDDO
RETURN T

ENDFUNCTION

4.3 Experimental Results

In this subsection, we investigate the effects of domain size
over computation time. The following tests were conducted
with the latest version of PolicyUpdater2running on an AMD
Athlon XP 2000+ machine with 512 MB of RAM, running
the Debian GNU/Linux 3.0r5 operating system with a plain
Linux 2.4.30 kernel.

Table 1 shows the domain size for each test case.SEs
andSEg are the numbers of singular and group entities, re-
spectively;SI is the number of initial state facts;SC is the
number of constraint rules;SU is the number of policy up-
date definitions;SS is the number of policy updates in the
sequence list; andSQ is the number of facts to be queried.

SEs SEg SI SC SU SS SQ

1 4 3 3 1 1 1 4
2 24 23 3 1 1 1 4
3 104 3 3 1 1 1 4
4 4 103 3 1 1 1 4
5 24 23 103 1 1 1 4
6 24 23 3 101 1 1 4
7 24 23 3 1 101 1 4
8 24 23 3 1 101 101 4
9 24 23 3 1 1 1 104

10 24 23 103 1 101 101 4
11 24 23 3 101 101 101 4
12 24 23 103 101 101 101 104
13 104 103 103 101 101 101 104

Table 1 Thirteen test cases with different domain sizes

The language L code listing in Example 1 is used in the
first test case. In the second test case, the same code is used
with 20 new singular entities and 20 new group entities. Test
cases 3 and 4 are similar to test case 1, except 100 new sin-
gular and group entities were added, respectively. Test cases
5 and 6 are similar to test case 2, except 100 new initial state
facts and constraint rules were added, respectively. In test
case 7, 100 new policy update definitions were added, and in
test case 8, these policy update defintions were applied. Test
case 9 is similar to test case 2, but this one tries to evaluate
100 additional query facts. Test case 11 is a combination of
test cases 6 and 8. Test case 12 is a combination of test cases
5, 9 and 11. Finally, test case 13 is a combination of test
cases 3 to 9, where the number of each domain component
is over 100.

2 At the time of writing, the latest version of PolicyUpdater is vlad
1.0.4.
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Table 2 shows the execution times of each test case.TC
is the total time (in seconds) spent by the system to translate
the language L statements to a normal logic program and
to generate the answer sets.TQ is the total time (in seconds)
used by the system to evaluate all the queries. To increase re-
sult accuracy, each test was conducted 10 times. The figures
in Table 2 are the averages.

TC TQ

1 0.000794 0.000472
2 0.261828 0.600932
3 0.072069 0.157254
4 14.017335 32.109291
5 0.309517 0.698068
6 0.306517 0.694729
7 0.304570 0.696636
8 15.315347 32.111353
9 0.301429 25.147113

10 15.375953 32.537575
11 15.889154 33.246048
12 15.715761 575.237985
13 ? ?

Table 2 Average computation times in seconds for each test case

As shown in Table 2, the first two execution times are
minimal when the domain size is small. Test 3 shows that
having a large number of singular entities have a measur-
able, but insignificant effect on computation time. However,
test 4 shows that an increase in the number of group enti-
ties have a great impact on computation speed. This is to
be expected, as Section 2.2 shows that the number of group
entities directly affect the number of transitivity, inheritance
and identity rules generated in the translation.

Comparing test 2 with tests 5 and 6, where the number of
initial state facts and constraint rules are increased by 100,
respectively, we observe that that there is a slight increase
in the times required to perform the computation and query
evaluation. One would expect that an increase in the number
of constraint rules will have more impact in execution times
than an increase in initial state facts. However, in test 6, the
computation times were low because only one policy update
was actually applied.

Test 7 shows that increasing the number of policy up-
date definitions has little impact on the computation times.
However, as test 8 shows, if these policy updates are actu-
ally applied to the policy base, computation time increases
dramatically.

Test case 9 shows that evaluating 100 additional queries
has little effect on translation and computation time, but ob-
viously affects evaluation time.

Test case 10 shows the combined effects of an increased
number of policy updates and initial state facts. As expected,
the times are only slightly larger than the times in test case
8, where only the number of policy updates were increased.
This is due to the fact that initial state facts are translated
directly into normal logic program rules. On the other hand,
test case 11 shows a significant increase in both computation

and evaluation times. This is expected, as the translation of
a single constraint rule results in a constraint rule in every
policy update state.

Test case 12 shows that although large numbers of initial
state facts and query requests by themselves have little effect
on performance, if combined together with the effects of a
large number of policy updates, computation time is signifi-
cantly increased, paticularly the query evaluation time. Note
that the value ofTQ for this test is the average total time for
104 query evaluations. Using this value, each query evalua-
tion takes an average of 5.531135 seconds to complete.

Unfortunately, the test system used in this experiment
ran out of memory while performing test case 13. Again, this
is expected, as the combined effects of having a large num-
ber of entities, constraint rules, policy updates and queries
will result in approximately 5.7 billion rules, using the for-
mula given in Theorem 1.

5 Case Study: Web Server Application

Document
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Apache Web Server

Client

Modules
Handler
Request

4

1PolicyUpdater
Module

Authentication
Module

2

5

Passwd
Table

Policy

PolicyUpdater
3

Fig. 3 PolicyUpdater module for Apache

The expressiveness of languageL and the effectiveness
of the PolicyUpdater system can be demonstrated by a web
server authorisation application. In this application, the core
PolicyUpdater system serves as an authorisation module for
theApache3web server.

The Apache web server provides a generic access control
system as provided by itsmodauth andmodaccessmod-
ules [2,15]. With this built-in access control system, Apache
provides the standard HTTPBasicandDigestauthentication
schemes [20], as well as an authorisation system to enforce
access control policies. Although the PolicyUpdater mod-
ule do not provide the full functionality of Apache’s built-in
authorisation modulemodauth, it does provide a flexible
logic-based authorisation mechanism.

As shown in Figure 3, Apache’s Access Control mod-
ule, together with its policy base, is replaced by the Poli-
cyUpdater module and its own policy base. The sole pur-
pose of the PolicyUpdater module is to act as an interface
between the web server and the core PolicyUpdater system.

3 Apache Web Server (http://www.apache.org )
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The system works as follows: as the server is started, the Pol-
icyUpdater module initialises the core PolicyUpdater system
by sending the policy base. When a client makes an arbi-
trary HTTP request for a resource from the server (1), the
client (user) is authenticated against the password table by
the built-in authentication module; once the client is prop-
erly authenticated (2) the request is transferred to the Pol-
icyUpdater module, which in turn generates a languageL
query (3) from the request details, then sends the query to
the core PolicyUpdater system for evaluation; if the query is
successful and access control is granted, the original request
is sent to the other request handlers of the web server (4)
where the request is eventually honoured; then finally (5),
the resource (or acknowledgement for HTTP requests other
than GET) is sent back to the client. Optionally, client can be
an administrator who, after being authenticated, is presented
with a special administrator interface by the module to allow
the policy base to be updated.

5.1 Policy Description in LanguageL′

The policy description in the policy base is written in lan-
guageL′, which is syntactically and semantically similar to
languageL except for the lack of entity identifier definitions.
Entity identifiers need not be explicitly defined in the policy
definition:

– Subjectsof the authorisation policies are the users. Since
all users must first be authenticated, the password table
used in authentication may also be used to extract the list
of subjects.

– Access Rightsare the HTTP request methods defined by
the HTTP 1.1 standard [19]: OPTIONS, GET, HEAD,
POST, PUT, DELETE, TRACE and CONNECT.

– Objectsare the resources available in the server them-
selves. Assuming that the document root is a hierarchy
of directories and files, each of these are mapped as a
unique object of languageL′.

Like languageL, languageL′ allows the definition of
initial state facts, constraint rules and policy update defini-
tions.

5.2 Mapping the Policies to LanguageL

As mentioned above, one task of the PolicyUpdater module
is to generate a languageL policy from the given language
L′ to be evaluated by the core PolicyUpdater system. This
process is outlined below:

– Generating entity identifier definitions.Subject entities
are taken from the authentication (password) table; ac-
cess rights are hard-coded built-ins; and the list of ob-
jects are generated by traversing the document root for
files and directories.

– Generating additional constraints.Additional constraint
rules are generated to preserve the relationship between
groups and elements. This is useful to model the asser-
tion that unless explicitly stated, users holding particu-
lar access rights to a directory automatically hold those
access rights to every file in that directory (recursively,
if with subdirectories). The module makes this assertion
by generating non-conditional constraint rules that state
that each file (object) is a member of the directory (ob-
ject group) in which it is contained.

All other languageL′ statements (initial state definitions,
constraint definitions and policy update definitions) are al-
ready in languageL form.

5.3 Evaluation of HTTP Requests

A HTTP request may be represented as a simplified tuple:

<usr, req meth, req res>

usr is the authenticated username that made the request
(subject);req meth is a standard HTTP request method (ac-
cess right); andreq res is the resource associated with the
request (object). Intuitively, such a tuple may be expressed
as a languageL atom:

holds(usr, req meth, req res)

With each request expressed as languageL atoms, a lan-
guageL query statement can be composed to check if the
request is to be honoured:

query holds(usr, req meth, req res);

Once the query statement is composed, it is then sent by
the PolicyUpdater module to the core PolicyUpdater system
for evaluation against the policy base.

5.4 Policy Updates by Administrators

After being properly authenticated, an administrator can per-
form policy updates through the use of a special interface
generated by the PolicyUpdater module. This interface lists
all the predefined policy updates that are allowed, as defined
in the policy description in languageL′, as well as all the
policy updates that have been previously applied and are in
effect. As with the core PolicyUpdater system, administra-
tors are allowed only the following operations:

– Apply a policy update or a sequence of policy updates to
the policy base. Note that like languageL, in language
L′ policy updates are predefined within the policy base
themselves.

– Revert to a previous state of the policy base by removing
a previously applied policy update from the policy base.
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6 Future Research and Extension

An obvious limitation of languageL, and therefore of the
PolicyUpdater system is its lack of expressive power to rep-
resent time-dependent authorisations. Consider the follow-
ing authorisation rule:

Bob holdsread access to filef1 between9 : 00 AM and
5 : 00 PM .

The authorisation information above can be broken down
into two parts: an authorisation part, i.e. ”Bob holds read ac-
cess to filef1”, and a temporal part, i.e. ”between 9:00 AM
and 5:00 PM”. As languageL can already express authori-
sations, we focus our attention to the temporal part. A naive
attempt to extend languageL to express time may involve
adding two extra parameters to each authorisation atom to
represent the starting and ending time points of the interval.
For example, the authorisation rule above can be represented
as:

holds(bob, read, f1, 900, 1700)

The atom above may be interpreted to mean that the au-
thorisation holds for all times between 9:00 AM and 5:00
PM, inclusive. In this example, the granularity of time, or
the smallest unit of time that can be expressed, is one minute.
Of course, a more general approach is to use the domain of
positive integers. With this approach, the system can handle
different granularities of time, where the choice of what time
unit each discrete value is interpreted as is left to the appli-
cation. For example, if the temporal values are defined to be
the number of seconds since 12 midnight, 01 Jan 1970 (i.e.
the UNIX epoch), then the atom below states that the autho-
risation holds at an interval starting at 9:00 AM, 18 March
1976 and ending at 5:00 PM, 18 March 1976:

holds(bob, read, f1, 195951600, 195980400)

While this approach gives the language enough expres-
sive power to represent authorisations bound by literal time
values, it is by no means expressive enough to model re-
lationships between the temporal intervals themselves. This
deficiency is shown in the example below:

Alice holds awrite access right to filef1 afterBob holds
a read access right to filef2.

Such authorisation rule might arise in a scenario where
the access rightwrite to file f1 can only be granted in some
time after theread access right to filef2 has been granted
and revoked. This example shows that the specific times at
which authorisations hold are not as important as the rela-
tionship between the times themselves. This authorisation
rule may be represented as follows:

holds(alice, write, f1, i1)
holds(bob, read, f2, i2)
after(i1, i2)

The example above states thatalice holds awrite ac-
cess right to filef1 at some time intervali1, bob holds aread
access right to filef2 at some time intervali2, and that the
intervali1 occurs at some time after the intervali1. As men-
tioned earlier, the actual values of the time interval variables
i1 andi2 is not as important as the fact that the intervali1
occurs after intervali2.

Allen [1] found that a total of 13 possible disjoint rela-
tions may exist between any two temporal intervals:before,
after, during, contains, meets, met by, starts, started
by, finishes, finished by andequals. Furthermore, as each
of these temporal interval relations are disjoint, he proposed
an algebra to represent a network of interval relations, which
may be composed of partial or disjunctive interval relation
information.

At the time of writing, the authors of this paper are work-
ing on a new authorisation language,LT . This new language
is an extension of languageL with provisions to: (1) express
authorisation rules that hold only on specified time intervals,
and (2) allow the representation of temporal interval rela-
tions either under Allen’s full interval algebra or one of its
subalgebras [14].

7 Conclusion

In this paper, we have presented the PolicyUpdater system,
a logic-based authorisation system that features query eval-
uation and dynamic policy updates. This is made possible
by the use of a first-order logic authorisation language, lan-
guageL, for the definition, updating and querying of access
control policies. As we have shown, languageL is expres-
sive enough to represent constraints and default rules.

The case study in Section 5 demonstrated how the Poli-
cyUpdater system can be adapted to be used in a real-world
web server authorisation application. As mentioned earlier,
while other logic based access control approaches have been
proposed recently, most of these cannot deal with dynamic
policy updates. Furthermore, most of these approaches do
not address issues concerning implementation. To the best of
our knowledge, the PolicyUpdater system is the first fully-
implemented logic based access control system to be used in
a web server security application.

Finally, as discussed in Section 6, we are currently work-
ing on extending languageL and the PolicyUpdater system
to support time-bound authorisation policies.
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Appendix A Translation to LanguageL∗

The following shows the languageL∗ translation of the languageL
program listing shown in Example 1.

1. Initial Fact Rules
ˆmemb(alice, grp2, S0)←
ˆholds(grp1, read, file, S0)←
ˆsubst(grp2, grp1, S0)←

2. Constraint Rules

ˆholds(grp1, write, file, S0)←
ˆholds(grp1, read, file, S0),

not ¬ ˆholds(grp3, write, file, S0)

ˆholds(grp1, write, file, S1)←
ˆholds(grp1, read, file, S1),

not ¬ ˆholds(grp3, write, file, S1)
3. Policy Update Rules

¬ ˆholds(grp1, read, file, S1)←
4. Inheritance Rules

ˆholds(alice, read, file, S0)←
ˆholds(grp1, read, file, S0),
ˆmemb(alice, grp1, S0),

not ¬ ˆholds(alice, read, file, S0)

¬ ˆholds(alice, read, file, S0)←
¬ ˆholds(grp1, read, file, S0),

ˆmemb(alice, grp1, S0)

...
ˆholds(alice, write, file, S1)←

ˆholds(grp3, write, file, S1),
ˆmemb(alice, grp3, S1),

not ¬ ˆholds(alice, write, file, S1)

¬ ˆholds(alice, write, file, S1)←
¬ ˆholds(grp3, write, file, S1),

ˆmemb(alice, grp3, S1)

ˆholds(grp1, read, file, S0)←
ˆholds(grp2, read, file, S0),
ˆsubst(grp1, grp2, S0)

¬ ˆholds(grp1, read, file, S0)←
¬ ˆholds(grp2, read, file, S0),

ˆsubst(grp1, grp2, S0)

...
ˆholds(grp3, write, file, S1)←

ˆholds(grp2, write, file, S1),
ˆsubst(grp3, grp2, S1)

¬ ˆholds(grp3, write, file, S1)←
¬ ˆholds(grp2, write, file, S1),

ˆsubst(grp3, grp2, S1)
5. Transitivity Rules

ˆsubst(grp1, grp3, S0)←
ˆsubst(grp1, grp2, S0), ˆsubst(grp2, grp3, S0)

...
ˆsubst(grp3, grp1, S0)←

ˆsubst(grp3, grp2, S0), ˆsubst(grp2, grp1, S0)

ˆsubst(grp1, grp3, S1)←
ˆsubst(grp1, grp2, S1), ˆsubst(grp2, grp3, S1)

...
ˆsubst(grp3, grp1, S1)←

ˆsubst(grp3, grp2, S1), ˆsubst(grp2, grp1, S1)
6. Inertial Rules

ˆholds(alice, read, file, S1)←
ˆholds(alice, read, file, S0),

not ¬ ˆholds(alice, read, file, S1)
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¬ ˆholds(alice, read, file, S1)←
¬ ˆholds(alice, read, file, S0),
not ¬ ˆholds(alice, read, file, S1)

ˆholds(alice, write, file, S1)←
ˆholds(alice, write, file, S0),

not ¬ ˆholds(alice, write, file, S1)

¬ ˆholds(alice, write, file, S1)←
¬ ˆholds(alice, write, file, S0),
not ¬ ˆholds(alice, write, file, S1)

ˆholds(grp1, read, file, S1)←
ˆholds(grp1, read, file, S0),

not ¬ ˆholds(grp1, read, file, S1)

¬ ˆholds(grp1, read, file, S1)←
¬ ˆholds(grp1, read, file, S0),
not ¬ ˆholds(grp1, read, file, S1)

...
ˆholds(grp3, read, file, S1)←

ˆholds(grp3, read, file, S0),
not ¬ ˆholds(grp3, read, file, S1)

¬ ˆholds(grp3, read, file, S1)←
¬ ˆholds(grp3, read, file, S0),
not ¬ ˆholds(grp3, read, file, S1)

ˆholds(grp1, write, file, S1)←
ˆholds(grp1, write, file, S0),

not ¬ ˆholds(grp1, write, file, S1)

¬ ˆholds(grp1, write, file, S1)←
¬ ˆholds(grp1, write, file, S0),
not ¬ ˆholds(grp1, write, file, S1)

...
ˆholds(grp3, write, file, S1)←

ˆholds(grp3, write, file, S0),
not ¬ ˆholds(grp3, write, file, S1)

¬ ˆholds(grp3, write, file, S1)←
¬ ˆholds(grp3, write, file, S0),
not ¬ ˆholds(grp3, write, file, S1)

ˆmemb(alice, grp1, S1)←
ˆmemb(alice, grp1, S0),

not ¬ ˆmemb(alice, grp1, S1)

¬ ˆmemb(alice, grp1, S1)←
¬ ˆmemb(alice, grp1, S0),
not ˆmemb(alice, grp1, S1)

...
ˆmemb(alice, grp3, S1)←

ˆmemb(alice, grp3, S0),
not ¬ ˆmemb(alice, grp3, S1)

¬ ˆmemb(alice, grp3, S1)←
¬ ˆmemb(alice, grp3, S0),
not ˆmemb(alice, grp3, S1)

ˆsubst(grp1, grp1, S1)←
ˆsubst(grp1, grp1, S0),

not ¬ ˆsubst(grp1, grp1, S1)

¬ ˆsubst(grp1, grp1, S1)←
¬ ˆmemb(grp1, grp1, S0),
not ˆmemb(grp1, grp1, S1)

...
ˆsubst(grp3, grp3, S1)←

ˆsubst(grp3, grp3, S0),
not ¬ ˆsubst(grp3, grp3, S1)

¬ ˆsubst(grp3, grp3, S1)←
¬ ˆmemb(grp3, grp3, S0),
not ˆmemb(grp3, grp3, S1)

7. Identity Rules

ˆsubset(grp1, grp1, S0)←
ˆsubset(grp2, grp2, S0)←
ˆsubset(grp3, grp3, S0)←
ˆsubset(grp1, grp1, S1)←
ˆsubset(grp2, grp2, S1)←
ˆsubset(grp3, grp3, S1)←

Appendix B Storage Structures

The data structures outlined in this section are used as a storage struc-
ture to hold the elements of languageL before any operations are per-
formed.

Each of the tables and lists used in the system inherits from a
generic ordered and indexed list implementation. Each node in this list
holds a generic data type that can be used to store strings, an arbitrary
data type or another list type.

B.1 Symbol Table

The symbol table is used to store the identifier entities defined in the
entity identifier declaration section of languageL programs. The sym-
bol table is composed of 6 separate string lists:

Field Type Description
ss string list single subject
sg string list group subject
as string list single access right
ag string list group access right
os string list single object
og string list group object

Each entity identifier are sorted in the above lists according to their
type, and ordered according to the order in which they are declared
in the program. Each list is indexed by consecutive positive integers
starting from zero.

B.2 Policy Base

When a languageL program is parsed, each of the facts, rules and pol-
icy updates must first be stored into the policy base. The policy base
is composed of 4 tables to store the following: initial state facts, con-
straint rules, policy update definitions and the policy update sequence.
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B.2.1 Atoms

The three types of atoms (holds, membership and subset) are repre-
sented as structures with 2 to 3 strings, with each string matching an
entity identifier from the symbol table.

Atom Field Type Description

holds
sub string subject entity
acc string access right entity
obj string object entity

member elt string single entity
grp string group entity

subset grp1 string subgroup entity
grp2 string supergroup entity

B.2.2 Facts

Facts are stored in a three-element structure composed of the follow-
ing: polymorphic type which can be any of the three atom structures
above; a type indicator to specify whether the fact isholds, member
or subset; and a truth flag, to indicate whether the atom is classically
negated or not (true if the fact holds andfalse if the classical nega-
tion of the fact holds).

Field Type Description
atom atom type polymorphic structure
type {h|m|s} holds, member or subset
truth boolean negation indicator

B.2.3 Expressions

Since expressions are simply conjunctions of facts, they are repre-
sented as a list of fact structures.

B.2.4 Initial State Facts Table

The initial state facts table is represented as a single list of fact struc-
tures, or an expression. Each fact in allinitially statements are added
into the initial state facts table.

B.2.5 Constraint Table

The constraint table is represented as a list of constraint structures, with
each structure composed of the following:

Field Type Description
exp expression type consequent
pcond expression type positive premise
ncond expression type negative premise

B.2.6 Policy Update Definition Table

Another list of structures is the policy update table. Each element struc-
ture of this table is composed of the following 4 fields:

Field Type Description
name string update identifier
vlist ordered string list variables
pre expression type precondition
post expression type postcondition

B.3 Policy Update Sequence Table

The policy update sequence table is an ordered list of sequence struc-
tures, each with the following elements:

Field Type Description
name string update identifier
ilist ordered string list identifiers


