International Journal of Information Security manuscript No.
(will be inserted by the editor)

Vino Fernando Crescini - Yan Zhang

PolicyUpdater — A System for Dynamic Access Control

Abstract PolicyUpdateris a fully-implemented authorisa- Another system, proposed by Bertino, et. al. [6], uses an
tion system that provides policy evaluations as well as dgethorisation mechanism based on ordered logic. This pow-
namic policy updates. These functions are achieved by #éul mechanism supports both positive and negative autho-
use of a logic-based languagg, to represent the underly-risations as well as rule derivations and default propositions.
ing access control policies, constraints and update propd3ther notable features of this system include the distinction
tions. The system performs access control query evaluatidreween weak and strong authorisations, support for admin-
and conditional policy updates by translating the languaggrative authorisation delegation and more importantly, con-
L policies to a normal logic program in a form suitable foflict resolution.

evaluation using th&table Modekemantics. In this paper, Jajodia, et. al. [13] argued that most authorisation sys-
we show the underlying mechanisms that make up the P@m models work on a single specific access control pol-
icyUpdater system, including the theoretical foundation @fy. Although it is theoretically possible for such systems to
its formal language, system structure, implementation issueshdle multiple policies, in practice, only one specific pol-

and some performance analysis. icy can be applied in a given system. As a solution to this
o o problem, they proposed a general access control framework

Keywords access control authorisation- artificial whose main feature is its flexibility to handle multiple poli-

intelligence- logic programming policy update cies in one system. Other features of this framework include

support for groups and roles, conflict resolution mechanisms
and support for different decision strategies.
1 Introduction These systems, effective as they are, lack the details nec-
essary to address the issues involved in the implementation
The traditional access control mechanism isAlseess Con- of such systems.
trol Matrix where columns represent subjects, rows repre- ThePolicy Description Languag®r PDL, developed by
sent objects and each cell contains the access-rights of a $idbo, et. al. [18], is a language for representing event and
ject over a particular object. However, flexibility and scalaaction oriented generic policiePDL is later extended by
bility issues arise when such method is used on real-wotghomicki, et. al. [8] to includgpolicy monitorswhich, in
applications. A more effective access control paradigm is tBffect, are policy constraints. Bertino, et. al. [7], again took
logic-based approach. In this approach, instead of explicihDL a step further by extendingolicy monitorsto allow
defining all access-rights of all subjects for all objects in@ers to express preferred constraints. While these generic
domain, a set of logical facts and rules are used to define fhgguages are expressive enough to be used for access con-
policy base. trol systems, systems built for such languages will not have
Recent advances in the field have produced a numbetigé ability to dynamically update the policies.
different approaches to logic-based access control systems;To overcome these limitations, we propose PolicyUp-
e.g. [12,16]. One such access control system was propogggkr. This access control system, with its own access control
by Bai and Varadharajan [3,4]. Their system’s key charactesnguage, provides the following: (1) a formal logic-based
istic is its ability to dynamically update an otherwise statigepresentation of policies, with variable resolution and de-
policy base. fault propositions, (2) a mechanism to conditionally and dy-
V. F. Crescint . Zhang namically perform a sequence of policy up_dates, and (3) a
School of Computing and Information Technology means of evaluating queries agalns_t the policies.
University of Western Sydney The rest of the paper is organised as follows. In Sec-
Penrith South DC, NSW 1797, Australia tion 2, the paper introduces languagewith its formal syn-
E-mail: {jcrescin,yan@cit.uws.edu.au tax, semantics and some examples. In Section 3, the issues

2 Vino Fernando Crescini, Yan Zhang

of consistency and query evaluation are addressed. The im-Policy Update Identifierare used for the sole purpose of

plementation, as discussed in Section 4, gives an overview naming a policy update. These identifier names are then

of the PolicyUpdater system as a whole, with its internal used as labels to refer to policy update definitions and

and external components. The section also includes a fewdirectives. As labels, identifiers of this class occupy a

algorithms that outline the underlying mechanisms as well different namespace from entity identifiers. For this rea-

as some experimental results that show the relationship be-son, policy update identifiers share the same syntax with

tween input size and execution time. The case study pre- entity identifiers:

sented in Sec_tion 5 describes an application of the PolicyUp- [a-Z]([a-zA-Z0-9 D {0127 }

dater system: an access control system for web servers. Sec-

tion 6 outlines the issues involved in extending the system to Variable Identifiersare used as place-holders for entity

include temporal authorisations. Finally, Section 7 contains identifiers. To distinguish them from entity and policy

a summary of the paper. update identifiers, variable identifiers are prefixed with
The PolicyUpdater system was originally introduced in an upper-case character, followed by 0 to 127 alphanu-

the conference proceedings paper [9]. Another conference meric and underscore characters. The following regular

proceedings paper [10] focuses on a web server authorisa-€xpression shows the syntax of variable identifiers:

tion system based on the core PolicyUpdater system. [A-Z]([a-zA-Z0-9] {0,127 }

Atoms. An atom is composed of a relation with 2 to 3 entity
2 LanguageL or variable identifiers that represents a logical relationship
between the entities. There are three types of atoms:

Languagec is a first-order logic language that represents a Holds.An atom of this type states that the subject identi-

policy base for an authorisation system. Two key features of .. S o .
the language are: (1) providing a means to conditionally and {éeerrf&?eﬁggs the access right identifiesc for the object

dynamically update the existing policy base and (2) having
a mechanism by which queries may be evaluated from the holds(<sub>, <acc>, <obj>)

updated policy base. — MembershipThis type of atom states that the singular
identifier elt is a member or element of the group iden-
tifier grp. It is important to note that identifierdt and

grp must be of the same base type (e.g. singular subject
and group subject).

2.1 Syntax

Logic programs of languagé are composed of language
statements, each terminated by a semicolon ;" character. C- memb(<elt>, <grp>)

style comments delimited by the "/*” and ™/ characters _ gypsetThe subset atom states that the group identifiers
may appear anywhere in the logic program. grpl andgrp?2 are of the same types and that graup1
is a subset of the group-p2.

subst(<grpl>, <grp2>)

Each languagel statement is composed of the following Atoms that contain no variables, i.e. composed entirely
components: identifiers, atoms, facts and expressions. of entity identifiers, are calleground atoms

2.1.1 Components of Language

Identifiers. The most basic unit of languageis the iden- Facts. A fact states that the relationship represented by an
tifier. Identifiers are used to represent the different compatom or its negation holds in the current context. Facts are
nents of the language. They are classified into three maiegated by the use of the negation operaforThe follow-

categories: ing shows the formal syntax of a fact:
— Entity Identifiersepresent constant entities that make up [J<holds _atom>|<memb atom>|

a logical atom. They are further divided into three types, <subst _atom>

with each type again divided into tisengular entityand Note that facts may be made up of atoms that contain

group entitysub-types: variable identifiers. Facts with no variable occurrences are
— Subjectse.qg. alice, lecturers, user-group. calledground facts
— Access Rights.g. read, write, own.
— Obijects e.qg. file, database, directory. Expressions An expression is either a fact or a logical con-

An entity identifier is defined as a single, lower-case dunction of facts, separated by the double-ampersand char-
phabetic character, followed by 0 to 127 alphanumerfctersi&.
and underscore characters. The following regular expres-<factl> [&& <fact2> [&& ..]]

sion shows the syntax of entity identifiers: .
y y Expressions that are made up of only ground facts are

[a-Z]([a-zA-Z0-9 1) {0,127 } calledground expressions

PolicyUpdater — A System for Dynamic Access Control 3

2.1.2 Definition Statements 2.1.3 Directive Statements

These statements are used to define the different rules thiaése statements are used to issue policy update and query
make up the policy base. directives to the PolicyUpdater system.

Entity Identifier Definition.All entity identifiers (subjects,

access rights, objects and groups) must first be declared Belicy Update DirectivesThe policy update sequence list
fore any other statements to define the entity domain of thentains a list of references to define policy updates in the
policy base. The following entity declaration syntax illusdomain. The policy updates in the sequence list are applied
trates how to define one or more entity identifiers of a pde the current state of the policy base one at a time to produce

ticular type. a policy base state against which queries can be evaluated.
i _ The following four directives are used for policy update
ident sublacc|obj[-grp] sequence list manipulation.

<entity _id>[, ...];

— Adding an update into the sequenBefined policy up-

Initial Fact Definition. The initial facts of the p0|lcy base, dates are added into the Sequence list through the use of
those that hold before any policy updates are performed, arethe following directive:

defined by using the following definition syntax:

initially <ground exp>; seq add <upd -id>(f<elt id>[, ..]I);
whereupd_id is the identifier of a defined policy update
and theelt_id list is a comma-separated list of entity
identifiers that will replace the variable identifiers that
occur in the definition of the policy update.

Listing the updates in the sequentée following direc-
tive may be used to list the current contents of the policy
update sequence list.

Constraint Definition.A constraint statement is a logical
rule that holds regardless of any changes that may occur
when the policy base is updated. Constraint rules are true
in the initial state and remain true after any policy update. _
The constraint syntax below shows that in any state of
the policy base, expressian:pl holds if expressiorezp2
is true and there is no evidence thap3 is true. Thewith
absence clause allows constraints to have a default proposi-
tion behaviour, where the absence of proof that an expres-

sion holds satisfies the clause condition of the proposition. Thjs girective is answered with an ordinal list of policy

seq list;

It is important to note that the expressiongl, exp2 updates in the form
andexp3 may be non-ground expressions, which means an
identifier occurring within these expressions may be avari- <p> <upd _id>([<elt ~ _id>[, ...]])
able.

wheren is the ordinal index of the policy update in the
sequence list starting at @pd_id is the policy update
identifier and the:lt_id list is the comma-separated list
of entity identifiers used to replace the variable identifier
place-holders.

— Removing an update from the sequeridee syntax be-
low shows the directive used to remove a policy update

always <expl>
[implied by <exp2>
[with absence <exp3>]];

Policy Update Definition.Before a policy update can be ap-
plied, it must first be defined by using the following syntax:

<upd_id>([<var _id>[, ...]]) reference from the listz is the ordinal index of the pol-
causes <expl> icy update to be removed. Note that removing a policy
[if <exp2>]; update reference from the sequence list may change the

_ _ _ N _ ordinal index of other update references.
upd_id is the policy update identifier to be used in ref-

erencing this policy update. The optional parameter_id seq del <n>;

is a list which contains the variable identifiers occurring in

expressionszpl andexp2 and will be eventually replaced — Computing an update sequendée policy updates in

by entity identifiers when the update is referenced. The post- the sequence list does not get applied untildhepute
condition expressioazpl is an expression that will hold in directive is issued. The directive causes the policy update

the state after this update is applied. The expressipg is references in the sequence list to be applied one at a time
a precondition expression that must hold in the current state in the same order that they appear in the list. The direc-
before this update is applied. tive also causes the system to generate the policy base

Note that a policy update definition will have no effect models against which query requests can be evaluated.
on the policy base until it is applied by one of the directives
described in the following section. compute;

4 Vino Fernando Crescini, Yan Zhang

Query Directive. A ground query expression may be issued The semantics of languadkeis based on the well-known
against the current state of the policy base. This current statswer set (stable model) semantics of extended logic pro-
is derived after all the updates in the update sequence hgvams proposed by Gelfond and Lifschitz [11]. The defini-
been applied, one at a time, upon the initial state. Query gion below formally defines the answer set of a logic pro-
pressions are answered withrae, false or anunknown, gram.

depending on whether the queried expression holds, its nega

tion holds, or neither, respectively. Syntax is as follows: Definition 1 Given an extended logic prografrcomposed
of ground facts and rules that do not have the negation-as-

query <ground _exp>; failure operatomot and a set#” of all ground facts inr. A
set) is then said to be an answer setwaf it is the smallest
Example 1 The following language program code listing Set that satisfies the following conditions:
shows a simple rule-based document access control systgmgg, any rule of the formpy — p1, ..., pn, Wheren > 1,

scenariq. o if p1,..., pn € A, thenpy € .
In this example, the subjeatice is initially a member 2 |t)\ contains a pair of complementary facts (i.e. a fact

of the subject grougrp2, which is a subset of grougrpl. and its negation), then = F.
The groupgrpl also initially holds aread access right for . .
the objectfile. The constraint states that if the grogyp1 For a ground extended logic progranthat is composed

hasread access foifile, and no other information is presenof rules that may have the negation-as-failure operatoy
to indicate thatyrp3 does not havevrite access forfile, asethisthe answer set of if and only if A is the answer set
then the grouprpl is grantedwrite access forfile. For of 7', wherern’ is obtained fromr by deleting the following:
simplicity, we only consider one policy updaielete_read
and a few queries that are evaluated after the policy upd
is performed.

Qte Each rule that contains a fact of the formt p in its
body wherep € A.
2. All facts of the formnot p in the bodies of the remaining

. . rules.

ident sub alice;

ident sub-grp grpl, grp2, grps; . -

ident acc read, write: 2.2.1 Domain Description of Language

ident obj file; The definition below gives a formal definition of the domain

initially description of languagg.
memb(alice, grp2) &&
holds(grpl, read, file) &&
subst(grp2, grpl);

Definition 2 The domain descriptio® of language’ is
defined as a finite set of ground initial state facts, constraint
rules and policy update definitions.

always holds(grpl, write, file) In addition to the domain descriptioR, languagel
implied by also includes an additional ordered set: the sequence.list
holds(grpl, read, file) The sequence ligt is an ordered set that contains a sequence
with absence of references to policy update definitions. Each policy up-
Iholds(grp3, write, file); date reference consists of the policy update identifier and a
series of zero or more identifier entities to replace the vari-
delete _read(SGO, OSO0) able place-holders in the policy update definitions.

causes 'holds(SGO, read, OSO0);

. 2.2.2 Language&*
seq add delete _read(grpl, file);

In languageZ, the policy base is subject to change, which is

compute; triggered by the application of policy updates. Such changes
] i bring forth the concept of policy base states. Conceptually,
query holds(grpl, write, file); a state may be thought of as a set of facts and constraints
query holds(grpl, read, file); of the policy base at a particular instant. The state transition
query holds(alice, write, file); notation below shows that a new st#&®’ is generated from
query holds(alice, read, file); the current staté@ B after the policy update is applied.
PB - PB’
2.2 Semantics This concept of a state means that for every policy update

applied to the policy base, a new instance of the policy base
After giving a detailed syntactic definition of language or a new set of facts and constraints are generated. To pre-
we now define its formal semantics. cisely define the underlying semantics of domain description

PolicyUpdater — A System for Dynamic Access Control 5

D, in languagel, we introduce languagg*, which is an Facts. A fact is a logical statement that makes a claim that
extended logic program representation of langudgwith an atom either holds or does not hold at a particular state.
state as an explicit sort. The following is the formal definition of fagi in stateo:
LanguageC* contains only one special state constsint
to represent the initial state of a given domain description.?” = [H]a, ae A7
All other states are represented as a resulting state obtained
by applying theRes function. 2.2.3 Translating Languagé to LanguageC*
The Res function takes a policy update referencéu €
1) and the current stateas input arguments and returns th&ijven a domain descriptioP; of languageC, we translate
resulting state’ after update: has been applied to state D, into an extended logic program of languag as de-
noted byT'rans(D.). The semantics ab, are provided by
the answer sets of the extended logic progt@mns(D,).

Given an initial stateS, and a policy update sequence lisBefore we can fully defin@'rans(D.), we must first define

1, each state;; (0 < i < |1|) may be represented as followsthe following functions:
The Copy Atom function takes two arguments: an atom

o' = Res(u, o)

o0 =S & of languageC* at some state and another state’. The
o1 = Res(ug, 09) function returns an equivalent atom of the same type and
: with the same entities, but in the new state specified.
oy = Res(ujy|—1, 0jy|-1) CopyAtom(é, o)
Substituting each state with a recursive call to R ho{ds(s’ a, o, ‘7/)_' if &= hf)lds(s’ a, 0, 0)
function, the final staté),, is defined as follows: = { memb(e, g, '), if & =memb(e, g, 0)

/ H A —
Sjy| = Res(uw_l, Res(. .., Res(ug, Sp))) subst(gi, g2, o), if & = subst(g1, g2, 0)
Another function,I'ransAtom, takes an atom of lan-
Entities. The entity set® is the union of six disjoint entity guage£ and an arbitrary state and returns the equivalent
sets: single subjeél,;, group subject,, single access right atom of language ™.
Eqs, Qroup access rigls, ,, single object,, and group ob-
ject&,,. Each entity in sef corresponds directly to then- TransAtom(a, o)

tity identifiersof languageL. holds(s, a, 0, @), if a = holds(s, a, o)
S=E UE UE ={ memb(e, g, o), if & = memb(e, g)
E = §Ss Uagsq ? subst(g1, g2, 0), if a = subst(g1, go)
Ea=Eas Uy S
0= Ens U Eog The T'ransFact function is similar to thel'ransAtom

function, but instead of translating an atom, it takes a fact

L from lan n tate then returns th ivalent fact
Atoms. The main difference between languageand lan- inolangug;:gkm and a state then returns the equivalent fac

guageL* lies in the definition of an atom. Atoms in language
L* represent a logical relationship of two to three entities, as o

with atoms of languagé. Furthermore, atoms of languagdnitial Fact Rules. The process of translating initial fact ex-
£* extends this definition by defining the state of the polidyressions of languagé to languageL* rules is a trivial
base in which the relationship holds. In this paper, atomsgiocedure: translate each fact that make up the initial fact
languageC* are written with the hat charactérdids, memb expression of languagé with its corresponding equivalent

andsubst) to differentiate from the atoms of language L?Aﬂal Sst;a;'éemaetr?tr?nc;;#arlj%@gé - Given the followingini-
The atom sefd? is the set of all atoms in state y 9)

A7 = A7 U A% U AT initially po && ... && py;

A7 = {holds(s, a,0,0) | s € Es,a € Eq,0 € Eo} The languageC* translation of this statement is shown be-
Agn = A(rjns U ‘Alrjna U Agzo low:

AT = AL U AZ, U A,

AZ o= {meAmb(e, g,0)| e €&, 9 € Esqy} Po

A9, = {memb(e, g,0) | € € Easy g € Eag} :

Ag = {memble, g, 0) | € € Eo, g € Eog} p

7= /I\) t) 1 1 e gs
(s,Ts - {SUAS (91, 92, 0) | 91, 92 g} where

Ala = {SupSt(gl’g2’U) | 91192 € Eag} pi = TransFact(p;, So),
%o = {subst(g1,92,0) | 91, 92 € Eog} 0<i<n

6 Vino Fernando Crescini, Yan Zhang

As shown above, the number of initial fact rules gener- For a given languagé€ constraint rule, the number of
ated from the translation is the number of facis the given constraint rules generated in the translation is:
languagec initial fact expression.

The following code shows a more realistic example of ™ 4]
languageL initially statements:

where
initially m is the number of facts in thdways clause
holds(admins, read, sys _data) && 4] is the number of states

memb(alice, admins); The example below shows how the following language

initially L code fragment is translated to langualje
memb(bob, admins); always
holds(alice, read, data) &&
holds(alice, write, data)
holds(admins, read, sys_data, Sp) — implied by _
memb(alice, admin)
with absence
lholds(alice, own, data);

Constraint Rules Each constraint rule in languadeis ex- Given a policy update reference in the sequenceylist

pressed as a series of logical rules in languagesiven t_ha@ (i.e. || = 1), the language* equivalent is as follows:
all variable occurrences have been grounded to entity iden-

tifiers, a constraint in languagg with m, n, 0 > 0 may be holds(alice, read, data, Sg) —

In languageL*, the above statements are translated to:

meimb(alice, admins, Sp) —
memb(bob, admins, Sp)

represented as: memb(alice, admin, Sy),
always ap && .. && ay, ‘not —holds(alice, own, data, So)
implied by by && ... && by, holds(alice, write, data, Sp)
with absence ¢, && ... && ¢, memb(alice, admin, Sp),

) not ﬁhOst(alice, own, data, Sp)
Each fact in thealways clause of language& corre-

sponds to a new rule, where it is the consequent. Each oholds(alice, read, data, S1) —
these new rules will have expressioérin the implied by mémb(alz‘ce, admin, S1),
clause as the positive premise and the expressionthe not —holds(alice, own, data, S1)

with absence clause as the negative premise. holds(alice, write, data, Sy) —

ag «— by, ...,by, not cg, ...,not c, meAmb(aAlice, admin, St),
not —holds(alice, own, data, S1)

@m <= b, ..., bn, M0t Co, ... 0t Co Policy Update RulesGiven thatm, n > 0, all occurrences

Under the definition of constraint rules, each of the rulé¥ variable place-holders grounded to entity identifiers, a
listed above must be made to hold in all states as definednﬁllcy updateu in language’ is in the form:
the sequence ligt. This can be accomplished by translating causes 28 28
each of the above rules to a set|gf rules, one for each 1; o S Am
state. if by && ... && by

In languageL*, such policy updates may be represented
as a set of implications, with each facin the postcondition
g G ” S s expression as the consequent and precondition expression
ag by b ot ¢, L not ¢, as the premise. However, the translation process must also
take into account that the premise of the implication holds
in the state before the policy update is applied and that the

&g” — bgo, ., b5 ot ég”, ...,not éf”

1Yn

S0 . 7S is 55 55, . ey
Uy = bg°s - 050, ot &, .. not E5° consequent holds in the state after the application.
:ASIW 7Sy 7Sy S]] S| Go — bo, ..., bn
am" by, ..., ba", not &', ... not G
where j ; 2
am < bg, ..., b
a? =TransFact(a;, 0),0 <i<m, mn 0 "
b =TransFact(bj, 0),0 < j <n, where
& =TransFact(cy, 0),0 < k < o, a; =TransFact(a;, Res(u, 0)),0 <i <m,

So <o < Sy bj =TransFact(b;, 0),0<j<n

PolicyUpdater — A System for Dynamic Access Control 7

Intuitively, given a languagé& policy update definition, —holds(ss, a, 0, 7) —
the number of languagé* rules generated in the transla- ﬁhoids(sg, a, 0, o), memb(ss, Sg, 0)
tion is m, which is the number of facts in the postcondition where
expression. Ss € Ess, Sq € Esg: ac ga: (XS 501 SO <o< S|'¢|

For example, given the following 2 languagepolicy

update definitions: 2. Access Right Group Membership Inheritance

V (s, as, ag, 0, 0),

grant _read() holds(s, as, 0, o) —
causes holds(alice, read, file) holds(s, ag, 0, 0), memb(as, ag,),
if memb(alice, readers); not —holds(s, a., 0, 0)
grant 7write() jhOldSA(S, Qg, O, U) — R
causes holds(alice, write, file) —holds(s, ag, 0, 0), memb(as, ag, o)
if memb(alice, writers); where
) . . 8 €& a5 € Eusy g € Eag,0€ Ey, So <0 < Sy
Given the update sequence listontains{grant_read, 3. Object Group Membership Inheritance
grant_write}, the above statements are written in language v (
L* as: S @ 0, Og, o),
. holds(s, a, 0s, o) «—
holds(alice, read, file, S1) — host(s, a, 0g, 0), meAmb(os, 0g,),
memb(alice, readers, Sp) not ﬁhOst(s, 4, 05, 0)
host(alice, write, file, S3) «— —holds(s, a, 05, 0)

ﬁhOst(s, a, 04, 0), mémb(os, 0g, 0)
where

Additional Constraints.In addition to the translations dis- 5 € &5, a €&, 05 € Eosy 0g € Eog, So < 0 < Sy
cussed above, there are a few other implicit constraint rules 4- Subject Group Subset Inheritance

memb(alice, writers, S1)

implied by languageC that need to be explicitly defined in V (541, 842, @, 0, 0),
languageC*. holds(sg1, a, 0, 7) —
— Inheritance rulesAll properties held by a group is inher- homs(sy}* a, 0, 0), subst(sg1, 542, 0),
ited by all the members and subsets of that group. This not =holds(sg1, a, 0, o)
rule is easy to apply for subject group entities. However, ﬁhozds(sgl, a,0,0) —

careful attention must be given to access right and ob-

ject groups. A subject holding an access right for an ob- —holds(sy2, a, 0, 0), subst(sy1, 542, 0)

ject group implies that the subject also holds that access where c s c
right for all objects in the object group. Similarly, a sub- Sg11 892 € Esg, 0 € Eq, 0 € Lo, 591 7 Sg2,
So <0 < Sy

ject holding an access right group for a particular object -)
implies that the subject holds all access rights contained 5- Access Right Group Subset Inheritance
in the access right group for that object. V (s, ag1, aga, 0, 0),

A conflict is encountered when a particular property is holds(s, ag1, 0, 0) —

to be inherited by an entity from a group of which itis a
member or subset, and the contained entity already holds
the negation of that property. This conflict is resolved by

host(s, g2, 0, 0), su?)st(agl, g2, 0),
not — host(s, g1, 0, 0)

giving negative facts higher precedence over its positive —holds(s, g1, 0, 0) —

counterpart: by allowing member or subset entities to in- —holds(s, g2, 0, 0), su?;st(agl, g2, 0)
herit its parent group’s properties only if the entities do where

not already hold the negation of those properties. 5 € &y, g1, Aga € Eagr 0 € Eov ag1 # ago,

The following are the inheritance constraint rules to al- Sn<og<S§
: : 0= 0 S Dyl
low the properties held by a group to propagate to its

members and subsets that do not already hold the nega- 6. Object Group Subset Inheritance

tion of the properties. ¥ (s, a, 0g1, 02, 0),
1. Subject Group Membership Inheritance holds(s, a, 0g1,0) —
Y (Sss Sgs @, 0, 0), holds(s, a, 0g2, 0), subst(og1, 042, 7),

hOZdS(Ss, a, o, O') — not ﬁhOidS(S, @, Og1, U)

host(sg, a, 0,0), mémb(ss, 8¢, 0), _\hOZdSA(S, a, 041, 0) — A
not ﬁhOZdS(sS, a, 0, 0) —holds(s, a, 042, 0), subst(og1, 042, 0)

Vino Fernando Crescini, Yan Zhang

where
s€&,a €&, 0q41,0g2 € Eng, 0g1 F 042,
So < 0 < Sjy|
— Transitivity rules.Given three distinct groups, G’ and
G".If Gisasubset off andG’ is a subset of!”’, thenG

Appendix A shows the languagé* translation of the
languageC code listing shown in Example 1. Note that given
a domain descriptioD., the translatiorl'rans(D,) may
contain more rules than the original statement®jin How-
ever, as the theorem below defines the maximum number of

must also be a subset 6f". The following rules ensure rules generated in a translatidirans(D,), it shows that
that the transitive property of subject, access right alte size of a translated domajiirans(D,)| can only be

object groups hold:
1. Subject Group Transitivity
V (591, 592, 593, 0),
sui)st(sgl, 83, 0) —
su?)st(sgl, 892, 0), su?)st(sgg, 893, 0)
where

501, 592, 593 € Esgy 591 7 592 F 593,
So < 0 < Sjy|

2. Access Right Group Transitivity
v (ag1, ag2, ags, o),
subst(agy, ags, o)
subst(agr, ags, o), subst(ags, ags, o)
where

agi, agz, ags € Eqag, ag1 # ags # ags,
So <0 < Sy

3. Object Group Transitivity
V (01, 092, 093, 0),
su?)st(ogl, 093,)
subst(og1, 0g2,), subst(ogs, 0gs, o)
where

091, 092, 093 € Eog, 0g1 7 092 # 093,
So <o <)y

— Inertial rules.Intuitively, all facts in the current state that
are not affected by a policy update should be carried over

to the next state after the update. In langu@de this

rule must be explicitly stated as a constraint. Formally,

the inertial rules are expressed as follows:
Y (Gyu) 3&/,
&' — &, not = &’
=& — = &, not &'
where
ae A%, ue, & =CopyAtom(a, Res(u, o))

— ldentity rules.Finally, explicit rules must be given to

show that every set is a subset of itself.
v (g, 9),
subst(g, g, o)
where
ge (589 U 5ag U Sog), Sop <o < SW’\

polynomially larger than the size of the given domgiy.|.
Therefore, from a computational viewpoint, computing the
answer sets df'rans(D,) is always feasible.

Theorem 1 (Translation Size) Given a domain descrip-
tion D,; the setsS;, S. andS,, containing the initially, con-
straint and policy update statementsliz, respectively; the
set& containing all the entities irD ., including its subsets
Es1 Ear Esv Essr Easy Eosy Esgr Eagr Eog: the setA contain-
ing all the atoms inD,; the maximum number of facid;

in the expression of anyitially statement irS;; the max-
imum number of factd/, in the always clause expression
of any constraint statement if.; the maximum number of
facts M, in the postcondition expression of any policy up-
date statement i§,,; and finally the policy update sequence
list ¢, then the maximum size of the translatiBruns(D,)

is:

|Trans(Dz)| <
M; |S;| +
9| M. |Se| +
|| My, +
2 [[Ess| [Esgl Eal |Eo] +
29| |Es] [Eas| |Eagl |Eo| +
2 Y] €] [Eal [Eos| [Eogl +
2[9] |Esgl? 10| o] +
2] |€s| |Eagl® o] +
219] [Es] |Eal |E0g]? +
[] (1€ 1% + [Eagl® + [Eogl®) +
2 [y] |A] +
U] (IEsgl + [Eagl + |€og)

Proof From Definition 3, it follows that the size of a lan-
guageL* translation is:

|Trans(Dr)| =
Fonl + 1ol + Fupl + 1]+ | Furl + (il + 1

whereF;,,, Feo, Fups Fin, Firr Fie, andF;q are the sets
of initial fact rules, constraint rules, policy update rules, in-
heritance rules, transitivity rules, inertial rules, and identity
rules, respectively.

As no initially statement inS; contain an expression

Definition 3 Given a domain descriptioP; of language With more thanl/; facts, the maximum number of initial
£, the languageC* translationTrans(D.) is an extended fact rules generated in the translation is:

logic program of languagé consisting of: (1) initial fact
rules, (2) constraint rules, (3) policy update rules, (4) inher-

| Fin| < M; |S;]

itance rules, (5) transitivity rules, (6) inertial rules, and (7) Each languagé& constraint statement ifi. corresponds

identity rules as described above.

to n rules in language&*, wheren is the number of policy

The domain descriptio® . of languagecl is said to be update states times the number of facts indleaysclause
consistentif and only if the translatioril’'rans(D,) has a of the statement. Withd/. as the maximal number of facts

consistent answer set.

in thealwaysclause of any constraint statement, we have:

PolicyUpdater — A System for Dynamic Access Control 9

| Feol < |9 Me |Sel initially

For policy update statements, only those that are applied a && .. && am && 1by && .. && 1 by

are actually translated to languagé. With M, as the max-
imal number of facts in the postcondition expression of any | |
applied policy update statement, we have: icr%pﬁgd “t')y&& Co && 1do && ... && 1 d,

| Fupl < [0| M, eo && ... && e, 8& !fy && .. && ! f,
with absence
&& ... && g, && 'hy && ... && | I,

always

The total number of inheritance rules generated in the
translation is the sum of the number of member inheritance 90
rules and the number of subset inheritance rules:

|Fin| = [Fin,, | + | Fin,

Since the membership inheritance rules show the rela-
tionships between every possible combination of single and
group entities times the number of states times 2 (for nega-
tive facts), we have:

update()
causes
ic && ... && i, && ljo && ... && ! 4,

ko && ... && k, && 'l && ... && ! I,

Letv;,¢ be aninitial fact definition statement,,,, a con-

| Fit, | = straint definition statement, ang, a policy update defini-
2 [Y] |Ess| |Esql |Eal 1Eo] + tion statement, Wher,,.., Yeon, Yupd € D. We then define
2 [9] |Es] |Eas| [€ag| |E0] + the following set constructor functions:

2 |9] [€s] [Eal [€os] [Eog]

For subset inheritance rules, only the relationships be-
tween group entities are considered:

f';ert('Yint) = {az | 0<2< m}
fi;t('yint) ={b,|0<z<n}
]:ctn('yupd) ={c.|0<2<0}
‘fihs| = fc_on('yupd) = {dz ‘ 0 <z< p}
e
S ag o + — - I < <
2|1/}| |gs| |€a| |gog|2 Fupd(’ycon) {jZ|O—Z—U}
As transitivity rules enumerate every possible combina- Using these functions, we define the following sets of
tions of any three group entities, for each entity type, trfgound facts:
total number of transitivity rules is shown below:
7:;Lt ={plpe fi—;t('yint)! Yint € D}

— 3 3 3
Forl = [01 (Esg” + [€ag” + [€0g]") Fine =1p | p € Fipi(Vint), Yint € D}
A single atom in languagé& corresponds ta inertial ~ F.5, ={p | p € FL,.(Veon)s Yeon € D}
rules in language*, wheren is the number of states times Fz., = {p | p € Fron(Yeon)s Yeon € D}
2 (for negative facts). This means the total number of inertial 7,,,,; = {¢ | » € F,,,;(Yupa), Yupa € Dr}
rules generated is: Fopa = 1P| P € Frppa(Yupd), Yupa € Dr}

[Fiel =2 |¢[| Al . —
Additionally, we use the complementary set notatibn

Lastly, the total number of identity rules is equal to thg, jenote a set containing the negation of facts inzet
total number of group entities times the number of states:

| Fial = 9] (€sg| + 1Eagl + o)) F={oelpe i
O
Let~ be an initial, constraint or policy update definition

statement of languagé. We then define the following func-
tions:

3 Domain Consistency Checking and Evaluation

A domain description of languagé must be consistent in Eff()

order to generate a consistent answer set for the evaluation {ao, ... am, =bo, ..., —by}, if v is initially
of queries. This section considers two issues: the problem of =1 {co, -..,¢0, ~do, ...,—d,}, if v is constraint
identifying whether a given domain description is consistent, {i0y « 1w, 270, -+ 2w 1 i v is Update
and how query evaluation is performed given a consistent
language domain description. Def(v)

Before the above issues can be considered, a few nota- 0, if ~ is initially

tional constructs should first be introduced. Given a domain _

e - = v . 1Gsy 2ho, ..., mhe b, if v IS constraint
descriptionD composed of the following languadestate- {99 19 0 ot if oy
ments: 0, if v is update

10 Vino Fernando Crescini, Yan Zhang

Pre(w) The absence of these rules medhsans(D.) is a pro-
0, if ~ is initially gram without negative cycles [17]. As no other rulelig
= {eo,....eq 2 for ..., fr}, if v is constraint can causé'rans(D.) to have these rules, we conclude that

a normal domain descriptioR., as defined by Definition 6,
will generate an extended logic prografrans(D) with-
o _) o out negative cycles. Also, from [5,17], we further conclude
Definition 4 Given a domain descriptioP of language that the translated prografirans(D,) must have an answer
L, two ground factg andp’ aremutually exclusivén Dy if: gt
b e n — Condition 1 of Definition 6 prevents rules of the follow-

.Pmepl{g:sm U Fint U Feon U Feon UF g UF 0t ing form from occurring il 'rans(Dy):

impli

P E{Fm U Fi UFL, U Feon UFL JUF G}

wnt wnt U

{ko, -+ kw, —lo, ..., —l }, if v is update

P
—\[)SO —

Simply stated, a pair of mutually exclusive facts canndthis shows that a subset of the answer set which contains
both be true in any given state. The following two definitionfacts from the initial stat&), is consistent.
refer to language statements. Condition 3 of Definition 6 guarantees that rules of the
following form do not occur ifl'rans(Dy):

Definition 5 Given a domain descriptioP, of language

L, two statements and~’ arecomplementaryn D, if one P
of the following conditions holds: This ensures that all constraint rules translated fi@mare
consistent.
1. v and~+’ are both constraint statements afid f(v) = Finally, Condition 4 of Definition 6 ensures that rules in
Eff(v). Trans(D.) of the following form:
2. ~is a constraint statement, is an update statement and Py
Eff(v)=EFf(¥)- PR
Definition 6 Given a domain descriptioB., Dy is said to c@nnot both affect the answer set as the premisesd p”
benormalif it satisfies all of the following conditions: are mu:u?lly exclusive and therefore only one is true in any
given state.
1. 7 .nF,., =0. These guarantee that the answer set do not contain com-
2. For any two constraint statementsand+’ in D, in- plementary facts, and therefore guarantee that the answer set
cludingy =+/, Def(y) N Eff(v') = 0. is consistent.
3. For all constraint statemenisn D, Ef f(v) N Pre(v) O
=0. As only consistent domain descriptions can be evaluated

4. For any twmomp|ementar$tatements/ andfy’ in Dg, in terms of user queries, Theorem 2 may be used to check
there exists a pair of ground expressioa Pre(v) and whether a domain description is consistent.

/ / / H
¢ € Pre(y') such that ande’ aremutually exclusive peinition 7 Given aconsistentiomain descriptioD.:, a
round query expressiap and a finite sequence ligt, we

_With the above definitions, we can now provide a sug'ayquerygb holds inD after the policy updates in sequence
ficient condition to ensure the consistency of a domain dgs; +» have been appliedienoted as

scription.
DE ’: {d)l 1/’}

Theorem 2 (Domain Consistency) A normaldomain de- if and only if
scription of languageC is alsoconsistent .
V(p, A, pEA

Proof From Definition 3, given a normal domain descrip- where

tion D, we only need to show thdtrans(D) has atleast pc ¢, A € A,

one consistent answer set to prove tRatis also consistent. j = TransFact(p, S|y)),
Given a normal domain descriptidd,, Condition 2 in A = answer sets di'rans(Dy)

Definition 6 ensures that the translati®inans(D,) do not

contain rules of the following form: Definition 7 shows that given a finite list of policy up-

datesy, a query expressiopi may be evaluated from a con-
sistent languag® domainD,. This is achieved by gener-
ating a set of answer sets from the normal logic program
translationTrans(D,). ¢ is then said to hold irD, after

: the policy updates in> have been applied if and only if ev-
Plel <« ey Phe2r - - - ery answer set generated contains every fact in the query
Pk ey Ph1y - - - expressionp.

ﬁob...,not,ﬁk,...
P1 < - POy -

PolicyUpdater — A System for Dynamic Access Control 11

Example 2 Given the languagg code listing in Example 1 languagel syntax then systematically stores entity iden-
and its semantic translation in Appendix A, where the updatéers into the symbol table while initial state facts, con-
sequence list) = {delete_read(grpl, file)}. The following straint expressions and policy update definitions are stored
shows the evaluated results of each qugry into their respective tables in the policy base.

¢ = holds(grpl, write, file): TRUE
¢1 = holds(grpl, read, file) : FALSE
@2 = holds(alice, write, file) : TRUE
¢3 = holds(alice, read, file) : FALSE

Agent Parser.The agent parser is the direct link between
the core PolicyUpdater system and the authorisation agent
program. The parser’s sole purpose is to receive langdage
directives from an agent, perform the directive upon the pol-
icy base and return a reply if the directive requires one. Such
directives may be to query the policy base or to manipulate
4 Implementation the policy update sequence table.

As mentioned earlieRolicyUpdateris a fully-implemented 4.1.2 Data Structures
system. In this section, we describe the implementation de-
tails of this system. Further technical information and sourgg languagel program is parsed, each statement contain-

code can be found in the project homepage at: ing entity declarations, initial facts, constraint rules and pol-
icy updates must first be stored into a structure before the
http://iwww.cit.uws.edu.au/"jcrescin/projects/PolicyUpdater translation process is started. As shown in Appendix B, the

structure is composed of the symbol table, the policy base
and the policy update sequence table.

4.1 System Structure The symbol table is used to store all entity identifiers de-
fined in the policy, while the rest of the policy definitions
are stored into the policy base. On the other hand, the se-
guence of policy update directives are stored separately into

[the update table.

Administrator

Agent

Query /
Update

Policy
Update

Parser

Resource

4.2 System Processes

Authorisation

Agent The processes presented in this section shows how the lan-
guage’ policy stored in the data structures is translated into
a normal logic program and how it can be dynamically up-
dated and manipulated to evaluate queries. The flowchart in

Figure 2 gives an overview of the system processes.

Resource
Request

Update
Table

PolicyUpdater

Fig. 1 Structure of PolicyUpdater

Symbol
Entity Identifiers Smodels]
Table
As shown in Figure 1, the PolicyUpdater system works
with an authorisation agent program that queries the polic Vaf‘ab'é }G_i Policy Base
base to determine whether to allow users access to resources. Grounding | Pocy
Through an authorisation agent program, the PolicyUpdater . NP
system also allows administrators to dynamically update the oy e Update
. . . f . . Table Translation
policy base by adding or removing update directives in the Query Request
policy update table. Agent
Query Reply
4.1.1 Parsers Fig. 2 System Flowchart

As the policy itself is written in languagg, the system uses
two parsers to act as interfaces to the authorisation agent and

the language policy. 4.2.1 Grounding Constraint Variables

Policy Parser. The policy parser is responsible for correctlyAs the constraints are in the process of being added into
reading the policy file into the core PolicyUpdater systerthe constraints table, each variable identifier that occurs in
The parser ensures that the policy file strictly adheres to theonstraint is grounded by replacing that constraint with a

12 Vino Fernando Crescini, Yan Zhang

set of constraints wherein each instance of the variable is re- The removal process involves adding a boolean param-
placed by all entity identifiers defined in the symbol tableter to each fact to indicate whether the fact is classically
Note that only those entity identifiers that are valid for eaagtegated or not. For example, given the fact:
fact in the current constraint are used to replace the vari-
able (e.g. only singular subject entity identifiers are used to™ holds(alice, exec, file)
replace an element variable occurring in a subject mem
fact).

. For exam.ple, giV(_an that t_hg symbol table contains threeholds(a“ce, exec, file, false)
singular subject entity identifiersilice, bob and charlie,

bler . L
0 remove classical negation, it is replaced by:

and the following constraint: For consistency, the following constraint is added:
always holds(SSUB, write, file) FALSE «
implied by _ holds(alice, exec, file, true),
holds(SSUB, read, file) && holds(alice, exec, file, false)

memb(SSUB, students)

with absence . . "
Iholds(SSUB, write, file): Representing Facts in Propositional Form. fact expressed

in normal logic program form is composed of the atom rela-
Grounding the constraint statement above yields thréien, the state in which it holds and a boolean flag to indicate
new constraint rules, each replacing occurrences of the vatassical negation. For notational simplicity, this tuple may

ableSSU B with alice, bob andcharlie, respectively. be represented by a unique positive integeshere0 < i
< |F| (|F| is the total number of facts in the domain). The
4.2.2 Policy Updates process of translating facts of languagénto normal logic

program form is summarised by the following function:

In Section 2.2, it is shown that policy updates are performed. _
; : ; .~ 1= Encode(a, o, T)
by treating each update as a constraint. This constraint is

composed of a premise, which is the precondition in the cur- As shown above, th&ncode function takes a language
rent state and a consequent, which is the postcondition ®ftoma, the stater in which o holds, and a boolean value
the resulting state after the application of the policy updatetg indicate whether or net is classically negatedzncode

The resulting state in this procedure represents the updaig@irns a unique indeifor that fact. The steps below out-

policy. _ _ . _ lines how theEncode function computes the index
The most crucial step in performing a policy update is

the translation of the policy updates into normal logic pro— Enumerate all possible atomBy using all the entities
gram constraints. This step involves identifying which pol- in the symbol table, all possible languageatoms may
icy updates are to be applied from the update sequence tablebe enumerated by grouping together 2 to 3 entities to-
and then composing the required constraint from the update gether. All possible atoms of typenlds are generated
definition in the policy base. Once the policy update con- by enumerating all possible combinations of subject, ac-
straints are composed, they are then treated as any other coneess right and object entities. The setnafmber atoms
straint rules and are translated with the rest of the policy into is generated from all the different combinations of singu-

a normal logic program. lar and group entities of types subject, access right and
object. Similarly, the set ofubset atoms is derived from

4.2.3 Translation to Normal Logic Program different subject, access right and object group pair com-
binations.

The semantics of languageshows that any consistent lan- — Arrange the atoms in a predefined ord&his proce-
guageL program can be translated into an equivalent ex- dure relles_, on the assumption that .the list of al! possible
tended logic program then translated again into an equiv- atoms derived from the step above is arranged in a prede-
alent normal |ogic program. However, the imp|ementaﬂ0n fined order. In this step we ensure that the atoms are enu-
of such translations can be greatly simplified by translating merated in the following ordefiolds, subject member,
languageC programs directly into normal logic programs. access right member, object member, subject subset,
access right subset andobject subset. In addition to
Removing Classical Negatiorin order to remove classical ~ the ordering of atom types, atoms of each type are them-
negation from facts of languag® each classically negated §elves sortgd according to the order in which their enti-
fact v is replaced by a new and unique positive facthat ~ ti€S appear in the symbol table. _
represents the negation of facfTo preserve the consistency — ASSign an ordinal index for each enumerated atSince

of the policy base for all facts in the domain, the following~ the enumerated list of atoms are ordered, consecutive
constraint rule must be added: positive integers may be assigned to each atom as an or-

dinal index:, where0 < i < n (n is the total number of
FALSE « p, p' atoms enumerated).

PolicyUpdater — A System for Dynamic Access Control 13

— Extend indexing procedure to represent fagtsthe im- a = Encode(Ti[i].atm, 0, Ti[i].tr)
plementation level, facts are just atoms with truth val- RuleBegin()
ues. As such, we can treat each atom as positive facts. RuleHead(a, T)
Since negative facts are just mirror images of their pos- RuleBody(T, T)
itive counterparts, their indices are calculated by adding RuleEnd()
n to the indices of the corresponding positive facts. Thus, ENDDO
indicesi, wheren < i < 2n are negative facts while in- ENDFUNCTION

dicesi, where0 < i < n are positive facts. Furthermore,) . .
this procedure is again extended to represent the states! '€ constraint rules generating algorithm below works

of the facts. The process is similar: indidesvhereo < PY creating a new rule that is composed of facts from the
i < 2n represent facts of stat, indicesi, where2n ~ constraints table translated by tf@.code() function. The

i < 4n represent facts of sta, and so on. outer loop ensures that a rule is generated for every policy
' update state.

Generating the Normal Logic Program from the Policy Basg&UNCTION TransConstRules(Tc, Tq)
With the language policy elements stored into the storage FOR | = 0 TO Len(Tq) DO
structures (see Appendix B), a normal logic program can FOR j = 0 TO Len(Tc) DO

then be generated for evaluation. The following algorithm RuleBegin()

generates a normal logic program, given the Symbol Table FOR k = 0 TO Len(Tc[j].exp) DO

T's, Initial State Facts Tabl&'i, Constraint Rules Tabl@c, a = Encode(Tclj].exp[k].atm,

Policy Update Definition Tabl&u, and Policy Update Se- i,

guence Tabl€q: Tcl[j].exp[K].tr)
RuleHead(a)

FUNCTION GenNLP(Ts, Ti, Tc, Tu, Tq)
TranslInitStateRules(Ti)
TransConstRules(Tc, Tq)
TransUpdateRules(Tu, Tq)
GeninherRules(Ts, Tq)
GenTransRules(Ts, Tq)
GenlnertRules(Ts, TQq)
GenldentRules(Ts, Tq)
GenConsiRules(Ts, Tq)

ENDDO
FOR k = 0 TO Len(Tc[j].pcond) DO
a = Encode(Tc[j].pcond[K].atm,
I,
Tc[j].pcond[k].tr)
RuleHead(a, T)
ENDDO
FOR k = 0 TO Len(Tc[j].ncond) DO
a = Encode(Tc]j].ncond[k].atm,

ENDFUNCTION |
The first threel'rans * () functions above perform a di- Tcfj].ncondK].tr)

rect translation of languagé statements to normal logic RuleHead(a, F)

program. The remaining fiv6en = () functions generate ad- ENDDO

ditional constraint rules. In the following algorithms, we use RuleEnd()

the following rule constructor functions to generate normal _ ENDDO

logic program rules: ENDDO

ENDFUNCTION

— RuleBegin() marks the beginning of a new rule.) .

— RuleHead(a, 7) generates the consequent of the rule. The algorithm below generates the policy update rules
iS a numeric representation of an atom (eg returned B9m the g|Ven pOI|Cy Update definition table NOtethat Only
the Encode() function) andr is eitherT or F, indicat- those policy updates that also appear in the policy update
ing whether the atom is positive or negative (negatio§€duence list are actually translated. The actual translation
as-failure). process is similar to that (_)f constraint ru_Ies, except each vari-

— RuleBody(a, T) generates the premise of the rule. Thable that may occur within the expressions is first grounded

parameters of this function is the same as that of tg@d the policy update state of gach fact in the rule head is
function RuleHead(). one more than that of each fact in the rule body.

— RuleEnd() marks the end of a rule. FUNCTION TransUpdateRules(Tu, Tq)

The algorithm below illustrates how initial state rules are FOR 1 = 0 TO Len(Tq) DO
generated from the storage structures. The process itself is FOR j = 0 TO Len(Tu) DO
straightforward: each fact in the initial state facts table is IF Tq[i].name == Tu[j].name THEN
translated by th&ncode() function and is made the head of e =

a new rule whose body is the liter&lue fact. GndUpdate(Tufj], Tqfi].ilist)
RuleBegin()

FUNCTION TranslnitStateRules(Ti) FOR k = 0 TO Len(e.post) DO
FOR i = 0 TO Len(Ti) DO a = Encode(e.post[k].atm,

14

Vino Fernando Crescini, Yan Zhang

i+ 1,
e.post[k].tr)
RuleHead(a, T)
ENDDO
FOR k = 0 TO Len(e.pre) DO
a = Encode(e.pre[k].atm,
I
e.pre[Kk].tr)
RuleBody(a, T)
ENDDO
RuleEnd()
ENDIF
ENDDO
ENDDO
ENDFUNCTION

by composing different combinations of entity identifiers to-
gether to form a fact. Each rule is then formed by stating that
for each policy update state, a fact holds in the current state
if it also holds in the previous state and its negation does not
hold in the current state.

FUNCTION GenlnertRules(Ts, Tq)
GenHldsInertRules(Ts, Tq)
GenMemblnertRules(Ts, Tq)
GenSubslinertRules(Ts, Tq)

ENDFUNCTION

The functionGenlIdentRules() shown below generates
the identity rules for each atom type: subject, access right
and object. A simple procedure is followed by each of the
3 functions: for every subject, access right and object group
entities, a subset rule is formed to show that a group is a

The functionGndUpdate(U, IL) used in the algorithm
above returns a structure composed of two expresgions
andpost, which corresponds with the-e andpost fields of
the given policy update definitiaii. All variables occurring FUNCTION GenldentRules(Ts, Tq)
in the facts of these expressions are replaced with the correGenSubldentRules(Ts, Tq)
sponding entities from the given entity identifier Iist. GenAccldentRules(Ts, Tq)

The function shown below generates 6 types of inheri- GenObjldentRules(Ts, Tq)
tance rules: subset subject, subset access right, subset obENOFUNCTION

membership subject, membership access right and member-))
ship object. Each of these 6 algorithms work in a similar 1 helasttwo functions below shows the algorithm to gen-

way: a rule is generated by composing every possible coRfate consistency rules for each atom type: holds, member-
bination of either subject, access right and object entities38IP @nd subset. As these rules use a similar process to gen-
form either a subset or membership fact. As with the coRate rules, only the holds consistency rule generation algo-

traint rule generating algorithm, each new rule generated #§iM is shown. The rules that are generated ensure that only
replicated for each policy update state. afact or its negation, but never both, holds in the same policy

update state.

FUNCTION GenConsiRules(Ts, Tq)
GenHldsConsiRules(Ts, Tq)
GenMembConsiRules(Ts, Tq)
GenSubsConsiRules(Ts, Tq)

ENDFUNCTION

subset of itself. As with the other rules, each rule generated
by these functions is replicated for each policy update state.

FUNCTION GenlnherRules(Ts, Tq)
GenSubSubstinherRules(Ts, Tq)
GenAccSubstinherRules(Ts, Tq)
GenObjSubstinherRules(Ts, Tq)
GenSubMemblinherRules(Ts, TQq)
GenAccMemblnherRules(Ts, Tq)

GenObjMemblinherRules(Ts, Tq)
ENDFUNCTION

The function below generates all the transitivity rules.
Each subject, access right and object transitivity rule gener-
ation algorithm follows a similar procedure: every possible ahlds.sub

FUNCTION GenHldsConsiRules(Ts, Tq)
FOR i = 0 TO Len(Tg) DO
FOR j = 0 TO Len(Ts.s) DO
FOR k = 0 TO Len(Ts.a) DO
FOR | = 0 TO Len(Ts.0) DO

combination of subject, access right or object group entities ahlds. acc z .IT:;HE]
are used to form subset facts, then each of these facts are ahlds.obj = Ts.o[l]

used to form a transitivity rule. As with inheritance rules,
each transitivity rule is replicated for each policy update

state.

FUNCTION GenTransRules(Ts, Tq)
GenSubTransRules(Ts, Tq)
GenAccTransRules(Ts, Tq)
GenObjTransRules(Ts, Tq)

ENDFUNCTION

RuleBegin()
RuleHead(F, T)
a = Encode(ahlds, i, T)
RuleBody(a, T)
a = Encode(ahlds, i, F)
RuleBody(a, T)
RuleEnd()
ENDDO
ENDDO

The inertial rules generation function below is composed = ENDDO
of 3 functions that generate inertial rules for each atom type: ENDDO
holds, membership and subset. Each type of rule is generdi®&DFUNCTION

PolicyUpdater — A System for Dynamic Access Control 15

4.2.4 Query Evaluation FOR i = 0 TO Len(SM) DO
IF NOT IsIn(SM[i], Fi) THEN
Once a normal logic program has been generated from the RETURN F

policy stored in the storage structure, a set of answer sets ENDIF
may then be generated by using the stable model semanticENDDO
[21] with the smodeldprogram. Query evaluation then be- RETURN T
comes possible by checking whether each fact of a givEeNDFUNCTION
query expression holds in each generated answer set of the
normal logic program.

If a given fact indeed holds in all the answer sets, it #-3 Experimental Results
then evaluated to be true. On the other hand, if the negation
of a fact holds in every answer set, then it is evaluated to lethis subsection, we investigate the effects of domain size
false. A fact or its negation that does not hold in every afver computation time. The following tests were conducted
swer set is neither true nor false, in which case the syst#ith the latest version of PolicyUpdateanning on an AMD
concludes that the truth value of the fact is unknown. THthlon XP 2000+ machine with 512 MB of RAM, running
algorithm below shows how, given a statea query expres- the Debian GNU/Linux 3.0r5 operating system with a plain
sionQe can be evaluated against a list of stable modals, Linux 2.4.30 kernel.

where each element i§iM is a list of facts. Table 1 shows the domain size for each test case.
andSg, are the numbers of singular and group entities, re-
FUNCTION EvaluateExp(Qe, SM, S) spectively;S; is the number of initial state facts, is the
result = T number of constraint rulessy is the number of policy up-
FOR i = 0 TO Len(Qe) DO date definitions;Ss is the number of policy updates in the
rv = EvaluateFact(QeJi], SM, S) sequence list; anflg is the number of facts to be queried.
IF rv == F THEN
RETURN F S S S S S S S
ELSE IF_rv == U THEN I EZ Eé é Ci li 51 %
result = U 2 24| 23| 3| 1| 1| 1| 4
ENDIF 3| 104 3 3| 1| 1| 1| 4
ENDDO 4 41 103 3 1 1 1 4
RETURN result 5 24 23 | 103 1 1 1 4
ENDEUNCTION 6 24 23 3 [101 1 1 4
71 24| 23 3 1] 101 1 4
The algorithm above attempts to evaluate each fact in 8 24] 23 3 1101} 101 4
: . 9| 24| 23 3 1 1 1| 104
the query expression. The functi@valuate Fact() shown 0 24 231103 T ToT 10T 7
below evaluates a single fa@tf in statesS, against a list of 11 24 23 37101 | 101 | 101 i
stable model$' M. 12| 24| 23] 103 101 | 101 | 101 | 104
13| 104 | 103 | 103 | 101 | 101 | 101 | 104

FUNCTION EvaluateFact(Qf, SM, S)

a = Encode(Qf.atm, S, Qf.tr) Table 1 Thirteen test cases with different domain sizes
IF IsFactin(SM, a) THEN
RETURN T
ELSE The language L code listing in Example 1 is used in the
a = Encode(Qf.atm, S, NOT Qf.tr) first test case. In the second test case, the same code is used
IF IsFactin(a, SM) THEN with 20 new singular entities and 20 new group entities. Test
RETURN F cases 3 and 4 are similar to test case 1, except 100 new sin-
ELSE gular and group entities were added, respectively. Test cases
RETURN U 5 and 6 are similar to test case 2, except 100 new initial state
ENDIF facts and constraint rules were added, respectively. In test
ENDIF case 7, 100 new policy update definitions were added, and in
ENDFUNCTION test case 8, these policy update defintions were applied. Test

case 9 is similar to test case 2, but this one tries to evaluate
The function/ s FactIn() simply returns a boolean value100 additional query facts. Test case 11 is a combination of
to indicate whether or not the given fact indéX (as re- test cases 6 and 8. Test case 12 is a combination of test cases
turned by theEncode() function) is present in every stables, 9 and 11. Finally, test case 13 is a combination of test
model inSM. cases 3 to 9, where the number of each domain component

FUNCTION IsFactin(Fi, SM) 's over 100.

2 At the time of writing, the latest version of PolicyUpdater is vlad
1 Smodels ffttp:/iwww.tcs.hut.fi'Software/smodels) 1.0.4.

16 Vino Fernando Crescini, Yan Zhang

Table 2 shows the execution times of each test cBse. and evaluation times. This is expected, as the translation of
is the total time (in seconds) spent by the system to translatsingle constraint rule results in a constraint rule in every
the language L statements to a normal logic program apdlicy update state.
to generate the answer sef3, is the total time (in seconds) Test case 12 shows that although large numbers of initial
used by the system to evaluate all the queries. To increasestete facts and query requests by themselves have little effect
sult accuracy, each test was conducted 10 times. The figusasperformance, if combined together with the effects of a
in Table 2 are the averages. large number of policy updates, computation time is signifi-
cantly increased, paticularly the query evaluation time. Note
that the value of’, for this test is the average total time for

Tc T

1 0.000794 0.0004‘}:’2 ;04 query evaluations. Using this value, each query evalua-
2 1 0.261828| 0.600932 tion takes an average of 5.531135 seconds to complete.

3| 0.072069| 0.157254 Unfortunately, the test system used in this experiment
4 | 14.017335] 32.109291 ran out of memory while performing test case 13. Again, this
2 8'2822% 8'282(7)23 is expected, as the combined effects of having a large hum-
103045701 0696636 ber of entities, constraint rules, policy updates and queries
8 [15315347 32.111353 will result in approximately 5.7 billion rules, using the for-

9 | 0.301429| 25.147113 mula given in Theorem 1.

10 | 15.375953| 32.537575

11 | 15.889154| 33.246048

12 | 15.715761| 575.237985

13 ? ? 5 Case Study: Web Server Application

Table 2 Average computation times in seconds for each test case

As shown in Table 2, the first two execution times are

minimal when the domain size is small. Test 3 shows thatc—

PolicyUpdater
3
. . i p - P;IicyUpdat'er 2| Authentication |l i
having a_Iar_ge .n_umber of singular entities have a measu Module Module tent
able, but insignificant effect on computation time. However, 4

test 4 shows that an increase in the number of group enti<__~ >
ties have a great impact on computation speed. This is t0 Document
be expected, as Section 2.2 shows that the number of groypf°°t
entities directly affect the number of transitivity, inheritance
and identity rules generated in the translation. . .

Comparing test 2 with tests 5 and 6, where the numberof 3 PolicyUpdater module for Apache
initial state facts and constraint rules are increased by 100,
respectively, we observe that that there is a slight increase
in the times required to perform the computation and query The expressiveness of languagend the effectiveness
evaluation. One would expect that an increase in the numloéthe PolicyUpdater system can be demonstrated by a web
of constraint rules will have more impact in execution timeserver authorisation application. In this application, the core
than an increase in initial state facts. However, in test 6, tRelicyUpdater system serves as an authorisation module for
computation times were low because only one policy update Apachéweb server.
was actually applied. The Apache web server provides a generic access control

Test 7 shows that increasing the number of policy ugystem as provided by it®od auth and modaccessmod-
date definitions has little impact on the computation timesles [2, 15]. With this built-in access control system, Apache
However, as test 8 shows, if these policy updates are agdwevides the standard HTTBasicandDigestauthentication
ally applied to the policy base, computation time increaseshemes [20], as well as an authorisation system to enforce
dramatically. access control policies. Although the PolicyUpdater mod-

Test case 9 shows that evaluating 100 additional querige do not provide the full functionality of Apache’s built-in
has little effect on translation and computation time, but olbuthorisation modulenodauth, it does provide a flexible
viously affects evaluation time. logic-based authorisation mechanism.

Test case 10 shows the combined effects of an increasedAs shown in Figure 3, Apache’s Access Control mod-
number of policy updates and initial state facts. As expectefle, together with its policy base, is replaced by the Poli-
the times are only slightly larger than the times in test caggUpdater module and its own policy base. The sole pur-
8, where only the number of policy updates were increasgmbse of the PolicyUpdater module is to act as an interface
This is due to the fact that initial state facts are translat@etween the web server and the core PolicyUpdater system.
directly into normal logic program rules. On the other hand,
test case 11 shows a significant increase in both computatichApache Web Servengp:imwww.apache.org)

Request
Handler
Modules

Apache Web Server

PolicyUpdater — A System for Dynamic Access Control 17

The system works as follows: as the server is started, the Pel- Generating additional constraintédditional constraint
icyUpdater module initialises the core PolicyUpdater system rules are generated to preserve the relationship between
by sending the policy base. When a client makes an arbi- groups and elements. This is useful to model the asser-
trary HTTP request for a resource from the server (1), the tion that unless explicitly stated, users holding particu-
client (user) is authenticated against the password table bylar access rights to a directory automatically hold those
the built-in authentication module; once the client is prop- access rights to every file in that directory (recursively,
erly authenticated (2) the request is transferred to the Pol- if with subdirectories). The module makes this assertion
icyUpdater module, which in turn generates a languédge by generating non-conditional constraint rules that state
guery (3) from the request details, then sends the query to that each file (object) is a member of the directory (ob-
the core PolicyUpdater system for evaluation; if the query is ject group) in which it is contained.

successful and access control is granted, the original request

is sent to the other request handlers of the web server (4) All other languaget’ statements (initial state definitions,
where the request is eventually honoured; then finally (5,)(gnstraint definitions and policy update definitions) are al-
the resource (or acknowledgement for HTTP requests ottieady in languagé€ form.

than GET) is sent back to the client. Optionally, client can be

an administrator who, after being authenticated, is presented

with a special administrator interface by the module to allog/3 Evaluation of HTTP Requests

the policy base to be updated.

A HTTP request may be represented as a simplified tuple:

5.1 Policy Description in Languag& <usr, req-meth, reqres>

. S usr is the authenticated username that made the request
The policy description in the policy base is written in lanyg piecty:-cq_meth is a standard HTTP request method (ac-
guageL’, which is syntactically and semantically similar iQeqq right): andeq res is the resource associated with the

languageC except for the lack of entity identifier definitions.re est (obiect). Intuitivel ch a tuple mav be expressed
Entity identifiers need not be explicitly defined in the poliqélsq‘,;J I:nggua]gé z)a-toml:“ Vel su up y Xpress

definition:

. o . . holds(usr, re _meth, req _res
— Subjectof the authorisation policies are the users. Since (g g)

all users must first be authenticated, the password table wijth each request expressed as languagéoms, a lan-
used in authentication may also be used to extract the Wageﬁ guery statement can be composed to check if the

of subjects. . request is to be honoured:
— Access Rightare the HTTP request methods defined by
the HTTP 1.1 standard [19]: OPTIONS, GET, HEAD, query holds(usr, req _meth, req _res);

POST, PUT, DELETE, TRACE and CONNECT.

— Objectsare the resources available in the server them- Once the query statement is composed, it is then sent by
selves. Assuming that the document root is a hierarctiye PolicyUpdater module to the core PolicyUpdater system
of directories and files, each of these are mapped a#oaevaluation against the policy base.
unique object of languagg’'.

Like language’, languageL’ allows the definition of 5 4 Policy Updates by Administrators
initial state facts, constraint rules and policy update defini-

tions. After being properly authenticated, an administrator can per-
form policy updates through the use of a special interface
generated by the PolicyUpdater module. This interface lists

5.2 Mapping the Policies to Language all the predefined policy updates that are allowed, as defined
in the policy description in languag€’, as well as all the

As mentioned above, one task of the PolicyUpdater modulelicy updates that have been previously applied and are in

is to generate a languagepolicy from the given language €ffect. As with the core PolicyUpdater system, administra-

L' to be evaluated by the core PolicyUpdater system. THis are allowed only the following operations:

process is outlined below:) .
— Apply a policy update or a sequence of policy updates to

— Generating entity identifier definition§ubject entites ~ the policy base. Note that like languagein language
are taken from the authentication (password) table; ac- £’ policy updates are predefined within the policy base
cess rights are hard-coded built-ins; and the list of ob- themselves.

jects are generated by traversing the document root for Revertto a previous state of the policy base by removing
files and directories. a previously applied policy update from the policy base.

18 Vino Fernando Crescini, Yan Zhang

6 Future Research and Extension The example above states thdice holds awrite ac-
cess right to filef; at some time interval, bob holds aread

An obvious limitation of language, and therefore of the access right to filg/; at some time intervak, and that the
PolicyUpdater system is its lack of expressive power to refffervali, occurs at some time after the interval As men-

resent time-dependent authorisations. Consider the follotf2ned earlier, the actual values of the time interval variables
ing authorisation rule: i1 andis is not as important as the fact that the interial

occurs after interval,.
Bob holdsread access to filgf; betweerd : 00 AM and Allen [1] found that a total of 13 possible disjoint rela-
5:00 PM. tions may exist between any two temporal intervédgore,
after, during, contains, meets, met by, starts, started
The authorisation information above can be broken dowy), finishes, finished by andequals. Furthermore, as each
into two parts: an authorisation part, i.e. "Bob holds read agf these temporal interval relations are disjoint, he proposed
cess to filef,”, and a temporal part, i.e. "between 9:00 AMan algebra to represent a network of interval relations, which
and 5:00 PM”. As languagg can already express authorimay be composed of partial or disjunctive interval relation
sations, we focus our attention to the temporal part. A naigormation.
attempt to extend languageto express time may involve At the time of writing, the authors of this paper are work-
adding two extra parameters to each authorisation atomirig on a new authorisation languag¥, . This new language
represent the starting and ending time points of the intervl.an extension of languaggwith provisions to: (1) express
For example, the authorisation rule above can be represer@ehorisation rules that hold only on specified time intervals,

as: and (2) allow the representation of temporal interval rela-
tions either under Allen’s full interval algebra or one of its
holds(bob, read, f1, 900, 1700) subalgebras [14].

The atom above may be interpreted to mean that the au-
thorisation holds for all times between 9:00 AM and 5:00 ;
PM, inclusive. In this example, the granularity of time, of Conclusion

the smallest unit of time that can be expressed, is one minute. . i
Of course, a more general approach is to use the domaid'§f"iS Paper, we have presented the PolicyUpdater system,

positive integers. With this approach, the system can han@ie?9ic-based authorisation system that features query eval-
different granularities of time, where the choice of what timg@tion and dynamic policy updates. This is made possible
unit each discrete value is interpreted as is left to the apghy the use of a first-order logic authorisation language, lan-
cation. For example, if the temporal values are defined to 8429€L, for the definition, updating and querying of access
the number of seconds since 12 midnight, 01 Jan 1970 (£@ntrol policies. As we have shown, languagés expres-

the UNIX epoch), then the atom below states that the auttfv€ nough to represent constraints and default rules.
risation holds at an interval starting at 9:00 AM, 18 March _ 1he case study in Section 5 demonstrated how the Poli-

1976 and ending at 5:00 PM, 18 March 1976: cyUpdater system can be adapted to be used in a real-world
' ' ' web server authorisation application. As mentioned earlier,
holds(bob, read, f1, 195951600, 195980400) while other logic based access control approaches have been

proposed recently, most of these cannot deal with dynamic
While this approach gives the language enough expreg®licy updates. Furthermore, most of these approaches do
sive power to represent authorisations bound by literal timet address issues concerning implementation. To the best of
values, it is by no means expressive enough to model ey knowledge, the PolicyUpdater system is the first fully-
lationships between the temporal intervals themselves. Thigoplemented logic based access control system to be used in
deficiency is shown in the example below: a web server security application.
Finally, as discussed in Section 6, we are currently work-
Alice holds awrite access right to filef; after Bob holds ing on extending language and the PolicyUpdater system
aread access right to filg. to support time-bound authorisation policies.

Such authorisation rule might arise in a scenario where
the access rightrite to file f; can only be granted in some,
time after theread access right to filef; has been granted
a”‘?' revoked..Thlls example shows tha_‘t the specific times at Allen J. F. (1983) Maintaining Knowledge about Temporal Inter-
which authorisations hold are not as important as the rela- vals. Communications of the ACM, 26(11):832-843
tionship between the times themselves. This authorisaticgh Apache Software Foundation (2004) Authentication, Authoriza-
rule may be represented as follows: tion and Access Control. Apache HTTP Server Version 2.1 Docu-

mentation http://httpd.apache.org/docs-2.1/
holds(ali ite, f1, 1) 3. Bai Y., Varadharajan V. (1999) On Formal Languages for Se-

OLas\atice, write, Ji, v quences of Authorization Transformations. In: Proceedings of
holds(bob, read, fa, i) Safety, Reliability and Security of Computer Systems (Lecture
after(iy, i2) Notes in Computer Science), 1698:375-384

References

PolicyUpdater — A System for Dynamic Access Control

19

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bai Y., Varadharajan V. (2003) On Transformation of Authoriza-
tion Policies. Data and Knowledge Engineering, 45(3):333-357
Baral C. (2003) Knowledge, Representation, Reasoning and
Declarative Problem Solving. pp. 99-100, Cambridge University
Press, UK

. Bertino E., Buccafurri F., Ferrari E. Rullo P. (2000) A Logic-based

Approach for Enforcing Access Control. Journal of Computer Se-
curity, 8(2-3):109-140

. Bertino E., Mileo A., Provetti A. (2003) Policy Monitoring with 3.

User-Preferences in PDL. In: Proceedings of IJCAI-03 Workshop
for Nonmonotonic Reasoning, Action and Change, pp. 37-44 4

. Chomicki J., Lobo J., Nagvi S. (2000) A Logic Programming Ap-

proach to Conflict Resolution in Policy Management. In: Proceed-
ings of KR2000, 7th International Conference on Principles of
Knowledge Representation and Reasoning, pp. 121-132

. Crescini V. F., Zhang Y. (2004) A Logic Based Approach for Dy-

namic Access Control. In: Proceedings of the 17th Australian Joint
Conference on Artificial Intelligence, 3339:623-635

Crescini V. F., Zhang Y., Wang W. (2004) Web Server Authorisa-
tion with the PolicyUpdater Access Control System. In: Proceed-
ings of the 2004 IADIS WWW/Internet Conference, 2:945-948
Gelfond M., Lifschitz V. (1998) The Stable Model Semantics for
Logic Programming. In: Proceedings of the Fifth International
Conference on Logic Programming, pp. 1070-1080

Halpern J. Y., Weissman V. (2003) Using First-Order Logic to
Reason About Policies. In: Proceedings of the 16th IEEE Com-
puter Security Foundations Workshop, pp. 187-201

Jajodia S., Samarati P., Sapino M. L., Subrahmanian V. S. (2001)
Flexible Support for Multiple Access Control Policies. ACM
Transactions on Database Systems, 29(2):214-260

Krokhin A., Jeavons P., Jonsson P. (2003) Reasoning about Tem-
poral Relations: The Tractable Subalgebras of Allen’s Interval Al-
gebra. Journal of the ACM, 50(5):591-640

Laurie B., Laurie P. (2003) Apache: The Definitive Guide (3rd
Edition). O'Reilly & Associates Inc., CA

Li N., Grosof B. N., Feigenbaum J. (2003) Delegation Logic: A
Logic-Based Approach to Distributed Authorization. ACM Trans-
actions on Information and System Security (TISSEC), 6(1):128-
171

Lin F., Zhao X. (2004) On Odd and Even Cycles in Normal Logic
Programs. In: Proceedings of AAAI 19th National Conference on
Artificial Intelligence and 16th Conference on Innovative Appli-
cations of Atrtificial Intelligence, pp. 80

Lobo J., Bhatia R., Naqvi S. (1999) A Policy Description Lan-
guage. In: Proceedings of AAAI 16th National Conference on Ar-
tificial Intelligence and 11th Conference on Innovative Applica-
tions of Artificial Intelligence, pp. 291-298

Network Working Group (1999) HTTP 1.1 (RFC 2616). The In-
ternet Societyftp:/ftp.isi.edu/in-notes/rfc2616.txt

Network Working Group (1999) HTTP Authentication: Basic and
Digest Access Authentication (RFC 2617). The Internet Society;
ftp://ftp.isi.edu/in-notes/rfc2617.txt

Simons P. (1995) Efficient Implementation of the Stable
Model Semantics for Normal Logic Programs. Research
Reports Number A35, Helsinki University of Technology,
http://www.tcs.hut.fi/Publications/reports/A35.ps.Z

Appendix A Translation to Language £*

The following shows the languagé® translation of the languagé
program listing shown in Example 1.

1.

2.

Initial Fact Rules
memb(alice, grp2, So) — 6.
host(grpl,read, file, So) —
subst(grp2, grpl, So) —

Constraint Rules

hozds(grpl, write, file, So) «—
holds(grpl, read, file, So),
not —\hOst(grpS, write, file, So)
holds(grpl,write, file, S1) —
hozds(grpl,read, file, S1),
not ﬁhOst(grp& write, file, S1)

Policy Update Rules

—holds(grpl,read, file, Sy) —

Inheritance Rules

host(alice, read, file, So) «—
host(grpl, read, file, So),
mémb(alice, grpl, So),
not —holds(alice, read, file, So)
—Jwids(alice, read, file, So) «—
—\hOst(grpl, read, file, So),
mémb(alice, grpl, So)

host(alice,write7 file, S1) —
host(grp?), write, file, S1),
mémb(alz'ce, grp3,51),
not —\hOst(alice7 write, file, S1)
—\hOst(alice, write, file, S1) «—
—\hOZdS(ngB, write, file, S1),
memb(alice, grp3, S1)
holds(grpl,read, file, So) «—
holds(grp2, read, file, So),
sui)st(grpL grp2, So)
—\hOst(grpl,read, file, So) «—
—\hOZCls(grp27 read, file,So),
subst(grpl, grp2, So)

hozds(grp?), write, file, S1) «—
holds(grp2, write, file, S1),
sui)st(gr;zﬁ7 grp2, St)

—|h02d5(grp3,write, file, S1) «—
—\hOst(grp27 write, file, S1),
sui}st(grp?), grp2, 51)

Transitivity Rules

sui)st(grpl, grp3, So) —

subst(grpl, grp2, So), subst(grp2, grp3, So)

suz)st(grpi%, grpl, So) «—
subst(grp3, grp2, So), subst(grp2, grpl, So)
subst(grpl, grp3,S1) —

subst(grpl, grp2, Si), sui)st(grpQ7 grp3, S1)

su?)st(grp?), grpl, Si) «

subst(grp3, grp2, Si), sui)st(grlzﬂ7 grpl, S1)

Inertial Rules

host(alice,read, file, S1) —
holds(alice, read, file, So),
not ﬁhOst(alice, read, file, S1)

20

Vino Fernando Crescini, Yan Zhang

ﬂhoids(alz'ce, read, file, S1) «—
ﬂhoids(alice, read, file, So),
not ﬁhoids(alice, read, file, S1)
host(alice, write, file, S1) «—
hozds(alice, write, file, So),
not ﬁhozds(alice, write, file, S1)
ﬁhozds(alz'ce, write, file, S1) —
ﬂhozds(alice, write, file, So),
not ﬁhoids(alice, write, file, S1)
host(grpl,read, file, S1) —
host(grpl, read, file, So),
not ﬁhozds(grpl, read, file, S1)
ﬁhOst(ngl, read, file, S1) «—
—holds(grpl,read, file, So),
not ﬁhozds(grpl, read, file, S1)

host(grpS,read, file, S1) —
host(grpB, read, file, So),
not —holds(grp3, read, file, S1)
ﬁhOst(grpB, read, file, S1) «—
—‘hOZdS(ng?), read, file, So),
not ﬁhozds(grpiﬁ, read, file, S1)
host(grpl,write, file, S1) —
host(g'rpl, write, file, So),
not —holds(grpl, write, file, S1)
—holds(grpl, write, file, Sy) —
—‘hOZdS(g’f‘pL write, file, So),
not —\hozds(grpl, write, file, S1)

host(grpiS,write, file, S1) —
hoids(grp?), write, file, So),
not —holds(grp3, write, file, S1)
—holds(grp3, write, file, S1) «—
—‘h,OZdS(ngS, write, file, So),
not —\hozds(grp?), write, file, S1)
meAmb(alice, grpl, S1) «—
meAmb(alice, grpl, So),
not ﬁmémb(alica grpl, St)
—memb(alice, grpl, Sy) —
ﬂmeAmb(alice, grpl, So),
not meAmb(alice, grpl, S1)

memb(alice, grp3,S1) —
meAmb(alice, grp3, So),
not ﬁmémb(alica grp3, St)
ﬂmémb(alice, grp3,S1) —
ﬂmémb(alice, grp3, So),
not meAmb(alice7 grp3, 51)
subst(grpl, grpl, S1) —
subst(grpl, grpl, So),
not ﬁsui)st(grpl, grpl, S1)

—|suAbst(g7’pl, grpl, S1) —

—memb(grpl, grpl, So),
not memb(grpl, grpl, S1)

subst(grp3, grp3, S1) —
subst(grp3, grp3, So),
not ~subst(grp3, grp3, Si)

—subst(grp3, grp3, S1) —
—\meAmb(grpZS, grp3, So),
not meAmb(grp?), grp3, 51)
7. ldentity Rules

sul;set(grpl7 grpl, So)
sul;set(grpQ, grp2, So)
sugset(grpS, grp3,So)
sul;set(grpl, grpl, S1)
sul;set(grpQ, grp2, S1)

()

rrr1r1

subset grp3, grp3, S1

Appendix B Storage Structures

The data structures outlined in this section are used as a storage struc-
ture to hold the elements of languagebefore any operations are per-
formed.

Each of the tables and lists used in the system inherits from a
generic ordered and indexed listimplementation. Each node in this list
holds a generic data type that can be used to store strings, an arbitrary
data type or another list type.

B.1 Symbol Table

The symbol table is used to store the identifier entities defined in the
entity identifier declaration section of languaggrograms. The sym-
bol table is composed of 6 separate string lists:

Field | Type Description

88 string fist | single subject

sg string list | group subject

as string list | single access righ
ag string list | group access righ
08 string list | single object

og string list | group object

Each entity identifier are sorted in the above lists according to their
type, and ordered according to the order in which they are declared
in the program. Each list is indexed by consecutive positive integers
starting from zero.

B.2 Policy Base

When a languag€ program is parsed, each of the facts, rules and pol-
icy updates must first be stored into the policy base. The policy base
is composed of 4 tables to store the following: initial state facts, con-
straint rules, policy update definitions and the policy update sequence.

PolicyUpdater — A System for Dynamic Access Control 21

B.2.1 Atoms B.3 Policy Update Sequence Table

The three types of atoms (holds, membership and subset) are refifee policy update sequence table is an ordered list of sequence struc-
sented as structures with 2 to 3 strings, with each string matchingtares, each with the following elements:
entity identifier from the symbol table.

Field Type Descripj[ion _
Atom Field | Type | Description name | string | update identifier
sub | string | subject entity tlist ordered string list| identifiers

holds acc string | access right entity|
obj string | object entity
elt string | single entity
qgrp string | group entity

grpl | string | subgroup entity
subset grp2 | string | supergroup entity

member

B.2.2 Facts

Facts are stored in a three-element structure composed of the follow-
ing: polymorphic type which can be any of the three atom structures
above; a type indicator to specify whether the fadiigds, member

or subset; and a truth flag, to indicate whether the atom is classically
negated or nottfue if the fact holds angfalse if the classical nega-
tion of the fact holds).

Field | Type Description

atom | atom type| polymorphic structure
type | {h]m[s} holds, member or subse
truth | boolean | negation indicator

—

B.2.3 Expressions

Since expressions are simply conjunctions of facts, they are repre-
sented as a list of fact structures.

B.2.4 Initial State Facts Table

The initial state facts table is represented as a single list of fact struc-
tures, or an expression. Each fact inialtially statements are added
into the initial state facts table.

B.2.5 Constraint Table

The constraint table is represented as a list of constraint structures, with
each structure composed of the following:

Field Type Description
exp expression type consequent
pcond | expression type positive premise
ncond | expression typg negative premise

B.2.6 Policy Update Definition Table

Another list of structures is the policy update table. Each element struc-
ture of this table is composed of the following 4 fields:

Field Type Description
name | string update identifier
vlist ordered string list| variables

pre expression type | precondition
post expression type | postcondition

